Skip to main content
Log in

Coupling of band shift and phase transition for enhanced electrical conductivity in p-type metallic CuS towards mid-temperature thermoelectric application

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Multiphase chalcogenides are highly interested candidate in thermoelectric application due to their unique band structure, which enhances electrical conductivity. Even though copper sulfide is a widely reported material for thermoelectrics, there have been no reports addressing its various densification methods to study thermoelectric behavior. This report represents the first promising study aimed at investigating the thermoelectric properties of copper sulfide using different densification methods. Herein, we prepared a multiphase (Cu1.96S + CuS) sample using the hydrothermal method followed by the hot press technique and compared its thermoelectric properties with single-phase (Cu1.81S) sample prepared by the cold press method. XRD confirms the formation of multiphase (Cu1.96S + CuS), and TG/DTA shows the phase transition temperature at which the hot press has been carried out. The multiphase sample exhibits a maximum electrical conductivity of 180 Scm−1 at 653 K, which represents a 55% improvement compared to the single-phase sample. This enhancement is a consequence of the high carrier concentration within the mixed phases, resulting in a gradual shift of the valence band towards the Fermi level (EF). Notably, the multiphase sample has exhibited lower thermal conductivity than the single-phase sample, mainly due to the interface phonon scattering. Consequently, the zT value of the multiphase sample has increased to 0.5 at 753 K. The results of our study highlight the effectiveness of a simple hot-press technique process in enhancing the performance of thermoelectric materials. This discovery presents a practical and efficient approach for significantly enhancing the thermoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. He, T.M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward. Science. 357, 6358357 (2017)

    Article  Google Scholar 

  2. G.J. Snyder, A.H. Snyder, M. Wood, R. Gurunathan, B.H. Snyder, C. Niu, Adv. Mater. 32, 2001537 (2020)

    Article  CAS  Google Scholar 

  3. Y. Gong, C. Chang, W. Wei, J. Liu, W. Xiong, S. Chai, D. Li, J. Zhang, G. Tang, Extremely low thermal conductivity and enhanced thermoelectric performance of polycrystalline SnSe by Cu doping. Scr. Mater. 147, 74–78 (2018)

    Article  CAS  Google Scholar 

  4. A.J. Ahmed, S.M.K. Nazrul Islam, R. Hossain, J. Kim, M. Kim, M. Billah, M.S.A. Hossain, Y. Yamauchi, X. Wang, Enhancement of thermoelectric properties of La-doped SrTiO3 bulk by introducing nanoscale porosity, R. Soc. Open Sci. 10, 190870 (2019)

  5. F. Guo, J. Zhu, B. Cui, Y. Sun, X. Zhang, W. Cai, J. Sui, Compromise of thermoelectric and mechanical properties in LiSbTe2 and LiBiTe2 alloyed SnTe. Acta Mater. 231, 117922 (2022)

    Article  CAS  Google Scholar 

  6. Z. Zhang, K. Zhao, H. Chen, Q. Ren, Z. Yue, T.R. Wei, P. Qiu, L. Chen, X. Shi, Entropy engineering induced exceptional thermoelectric and mechanical performances in Cu2-yAgyTe1-2xSxSex. Acta Mater. 224, 117512 (2022)

    Article  CAS  Google Scholar 

  7. M.A. Jenisha, S. Kavirajan, S. Harish, J. Archana, K. Kamalabharathi, E.S. Kumar, M. Navaneethan, Interfacial engineering effect and bipolar conduction of Ni- doped MoS2 nanostructures for thermoelectric application. J. Alloys Compd. 895, 162493 (2022)

    Article  CAS  Google Scholar 

  8. S. Viviana, A. Sarkar, O.I. Lebedev, C. Candolfi, B. Lenoir, R. Coelho, A.P. Gonçalves, Large-scale colloidal synthesis of chalcogenides for thermoelectric applications. ACS Applied Materials & Interfaces. 15, 15498–15508 (2023)

    Article  CAS  Google Scholar 

  9. L. Amiri, A. Narjis, L. Nkhaili, M. Bousseta, S. Elmassi, A. Tchenka, S. Drissi, A. Abali, H.H. Somaily, A. El Kissani, K. El Assali, Spectroscopic study and thermoelectric properties of copper sulfide thin films prepared by the flash evaporation method. J. Alloys Compd. 924, 166479 (2022)

    Article  CAS  Google Scholar 

  10. A.V. Powell, Recent developments in Earth-abundant copper-sulfide thermoelectric materials. J. Appl. Phys. 10, 100901 (2019)

    Article  Google Scholar 

  11. X. Chen, J. Yang, T. Katkus, T. Wu, J. Tao, J. Li, C. Wang, X. Wang, W. Dai, Exploring thermoelectric property improvement for binary copper chalcogenides. Front. Mater. 7, 589568 (2020)

    Article  Google Scholar 

  12. G. Dennler, R. Chmielowski, S. Jacob, F. Capet, P. Roussel, S. Zastrow, K. Nielsch, I. Opahle, G.K.H. Madsen, Are binary copper sulfides/selenides really new and promising thermoelectric materials? Adv. Energy Mater. 9, 1301581 (2014)

    Article  Google Scholar 

  13. K. Okamoto, S. Kawai, Electrical conduction and phase transition of copper sulfides. Jpn. J. Appl. Phys. 12, 1130–1138 (1973)

    Article  CAS  Google Scholar 

  14. A. Mikuła, P. Nieroda, K. Mars, J. Dąbrowa, A. Koleżyński, Structural, thermoelectric and stability studies of Fe-doped copper sulfide. Solid State Ionics. 350, 115322 (2020)

    Article  Google Scholar 

  15. X-L. Shi, W-D. Liu, M. Li, Q. Sun, X. Sheng-Duo, D. Du, J. Zou, Z-G. Chen, A solvothermal synthetic environmental design for high-performance SnSe-based thermoelectric materials. Adv. Energy Mater. 12, 2200670 (2022)

    Article  CAS  Google Scholar 

  16. L. Pan, X-L. Shi, C. Song, W-D. Liu, Q. Sun, L. Chunhua, Q. Liu, Y. Wang, Z-G. Chen, Graphite nanosheets as multifunctional nanoinclusions to boost the thermoelectric performance of the shear exfoliated Bi2O2Se. Adv. Funct. Mater. 32, 2202927 (2022)

    Article  CAS  Google Scholar 

  17. J. Wenting, X-L. Shi, W-D. Liu, H. Yuan, K. Zheng, B. Wan, W. Shen, Z. Zhang, C. Fang, Q. Wang, L. Chen, Y. Zhang, X. Jia, Z-G. Chen, Boosting the thermoelectric performance of n-type Bi2S3 by hierarchical structure manipulation and carrier density optimization. Nano Energy. 87, 106171 (2021)

    Article  CAS  Google Scholar 

  18. A. Narjis, A. Outzourhit, A. Aberkouks, M. El Hasnaoui, L. Nkhaili, Structural and thermoelectric properties of copper sulphide powders. J. Semicond. 39, 122001 (2018)

    Article  CAS  Google Scholar 

  19. Z.H. Ge, Y.X. Zhang, D. Song, X. Chong, P. Qin, F. Zheng, J. Feng, L.D. Zhao, Excellent: ZT achieved in Cu1.8S thermoelectric alloys through introducing rare-earth trichlorides, J. Mater. Chem. A. 29, 14440-14448 (2018)

  20. C. Tang, D. Liang, H. Li, K. Luo, B. Zhang, Preparation and thermoelectric properties of Cu1.8S/CuSbS2 composites, J. Adv. Ceram. 8, 209–217 (2019)

  21. P. Qiu, Y. Zhu, Y. Qin, X. Shi, L. Chen, Electrical and thermal transports of binary copper sulfides CuxS with x from 1.8 to 1.96, APL Mater. 10, 104805 (2016)

  22. P. Lukashev, W.R.L. Lambrecht, T. Kotani, M. Van Schilfgaarde, Electronic and crystal structure of Cu2-xS: Full-potential electronic structure calculations. Condens. Matter Mater. Phys. 13, 134113 (2007)

    Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 18, 3865–3868 (1996)

    Article  Google Scholar 

  24. K. Hu, M. Wu, S. Hinokuma, T. Ohto, M. Wakisaka, J.I. Fujita, Y. Ito, Boosting electrochemical water splitting: Via ternary NiMoCo hybrid nanowire arrays. J. Mater. Chem. A. 5, 2156–2164 (2019)

    Article  Google Scholar 

  25. P.E. Blöchl, O. Jepsen, and O.K. Andersen, Improved tetrahedron method for Brillouin Zone integrations, Phys. Rev. B. 23, 16223 (1994)

  26. A. Morales-García, A.L. Soares, E.C. Dos Santos, H.A. De Abreu, H.A. Duarte, First-principles calculations and electron density topological analysis of covellite (CuS). J. Phys. Chem. A. 118, 5823–5831 (2014)

    Article  PubMed  Google Scholar 

  27. W. Du, X. Qian, M. Xiaodong, Q. Gong, H. Cao, J. Yin, Shape-controlled synthesis and self-assembly of hexagonal covellite (CuS) nanoplatelets. Chem. - A Eur. J. 11, 3241–3247 (2007)

    Article  Google Scholar 

  28. C.M. Simonescu, V.S. Teodorescu, O. Carp, L. Patron, C. Capatina, Thermal behaviour of CuS (covellite) obtained from copper-thiosulfate system. J. Therm. Anal. Calorim. 88, 71–76 (2007)

    Article  CAS  Google Scholar 

  29. E.N. Selivanov, R.I. Gulyaeva, A.D. Vershinin, Thermal expansion and phase transformations of copper sulfides. Inorg. Mater. 43, 573–578 (2007)

    Article  CAS  Google Scholar 

  30. A.T. Sheardy, D.M. Arvapalli, J. Wei, Novel microwave synthesis of near-metallic copper sulfide nanodiscs with size control: Experimental and DFT studies of charge carrier density. Nanoscale Adv. 3, 1054–1058 (2020)

    Article  Google Scholar 

  31. S.O.J. Long, A.V. Powell, P. Vaqueiro, S. Hull, High thermoelectric performance of bornite through control of the Cu(II) content and vacancy concentration. Chem. Mater. 2, 456–464 (2018)

    Article  Google Scholar 

  32. P. Nieroda, A. Kusior, J. Leszczyński, P. Rutkowski, and Koleżyński, Thermoelectric properties of Cu2Se Synthesized by. Materials. 14, 3650 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. K. Chen, C. Chiang, D. Ray, Hydrothermal synthesis of chalcopyrite using an environmental friendly chelating agent. Mater. Lett. 98, 270–272 (2013)

    Article  Google Scholar 

  34. M.C. Biesinger, Advanced analysis of copper X-ray photoelectron spectra. Surf. Interface Anal. 49, 1325–1334 (2017)

    Article  CAS  Google Scholar 

  35. G.J. Snyder, A.H. Snyder, M. Wood, R. Gurunathan, B.H. Snyder, C. Niu, Weighted mobility. Adv. Mater. 32, 2001537 (2020)

    Article  CAS  Google Scholar 

  36. W. Di Liu, L. Yang, Z.G. Chen, J. Zou, Promising and eco-friendly Cu2X-based thermoelectric materials: Progress and applications. Adv. Mater. 8, 1905703 (2020)

    Article  Google Scholar 

  37. L.J. Zheng, B.P. Zhang, H. Zhang Li, J. Pei, J.B. Yu, CuxS superionic compounds: Electronic structure and thermoelectric performance enhancement. J. Alloys Compd. 722, 17–24 (2017)

    Article  CAS  Google Scholar 

  38. L. Xiao, J. Wu, J. Ran, Y. Liu, W. Qiu, F. Lu, F. Shao, D. Tang, P. Peng, Near-infrared radiation absorption properties of covellite (CuS) using first-principles calculations. AIP Adv. 6, 085122 (2016)

    Article  Google Scholar 

  39. I. Grozdanov, Optical band electrical properties of copper sulfide films. J Solid State Chem. 114, 469–475 (1995)

    Article  CAS  Google Scholar 

  40. P. Parreira, G. Lavareda, A. Amaral, A.M. Botelho Do Rego, O. Conde, J. Valente, F. Nunes, C. Nunes De Carvalho, Transparent p-type CuxS thin films, J. Alloys Compd. 509, 5099–5104 (2011)

  41. Y. Xie, L. Carbone, C. Nobile, V. Grillo, S. D’Agostino, F. Della Sala, C. Giannini, D. Altamura, C. Oelsner, C. Kryschi, P.D. Cozzoli, Metallic-like stoichiometric copper sulfide nanocrystals: Phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling, ACS Nano. 7, 7352–7369 (2013)

  42. G.J. Snyder, A. Pereyra, R. Gurunathan, Effective mass from seebeck coefficient. Adv. Funct. Mater. 32, 2112772 (2022)

    Article  CAS  Google Scholar 

  43. Z.H. Ge, Y.X. Zhang, D. Song, X. Chong, P. Qin, F. Zheng, J. Feng, L. Zhao, Excellent ZT achieved in Cu1.8S thermoelectric alloys through introducing rare-earth trichlorides, J. Mater. Chem. A. 6, 14440–14448 (2018)

  44. Z. Zhao, D-D. Liang, J. Pei, J-L. Shi, Y. Wu, R. Zhang, B-P. Zhang, Enhanced thermoelectric properties of MnxCu1.8S via tuning band structure and scattering multiscale phonons, J.Mat. 7, 556-562 (2021)

  45. S.W. Gu, Y.X. Zhang, J. Guo, J. Feng, Z.H. Ge, Effects of sintering temperature on thermoelectric properties of Cu1.8S bulk materials, Mater. Res. Express. 7, 015923 (2020)

  46. H. Tang, H.L Zhuang, B. Cai, J. Dong, F-H. Sun, and J.F. Li. Enhancing the thermoelectric performance of Cu1.8S by Sb/Sn co-doping and incorporating multiscale defects to scatter heat-carrying phonons, J. Mater. Chem. C. 7, 4026-4031 (2019)

  47. G. Zhen-Hua, B-P. Zhang, Y-X. Chen, Z-X. Yu, Y. Liu, and J-F. Li. Synthesis and transport property of Cu1.8S as a promising thermoelectric compound, Chem Com 47, 12697-12699 (2011)

  48. Y. Yao, B-P. Zhang, J. Pei, Y-C. Lui, J-F. Li, Thermoelectric performance enhancement of Cu2S by Se doping leading to a simultaneous power factor increase and thermal conductivity reduction. J. Mater. Chem. C. 5, 7845–7852 (2017)

    Article  CAS  Google Scholar 

  49. D.L. Shi, Z.M. Geng, L. Shi, Y. Li, and K.H. Lam, Thermal stability study of Cu1.97Se superionic thermoelectric materials, J. Mater. Chem. C. 30, 10221-10228 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Navaneethan.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 616 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenisha, M.A., Kavirajan, S., Harish, S. et al. Coupling of band shift and phase transition for enhanced electrical conductivity in p-type metallic CuS towards mid-temperature thermoelectric application. emergent mater. 7, 171–186 (2024). https://doi.org/10.1007/s42247-023-00597-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-023-00597-7

Keywords

Navigation