Skip to main content
Log in

Effects of second phases on thermoelectric properties in copper sulfides with Sn addition

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The Cu–S compounds have been reported as promising thermoelectric materials with abundant element composition, low price, and low toxicity. In this work, SnxCu1.8−xS samples with different Sn contents (x = 0.005, 0.01, 0.03, and 0.05) were fabricated by mechanical alloying combined with spark plasma sintering. The phase structure and microstructure of all the bulk samples were checked by X-ray diffraction (XRD) and field emission scanning electron microscopy respectively. The thermoelectric transport properties, such as electrical conductivity, Seebeck coefficient, carrier concentration, carrier mobility, and thermal conductivity, were measured. The effect of second phase introduced by Sn addition on the thermoelectric properties of Cu–S system was investigated. The thermoelectric properties of samples were improved by the precipitations of two different second phases (Cu2SnS3 and Cu4SnS4). The second phase species depend on the Sn contents. Finally, the Sn0.01Cu1.79S bulk sample obtained the highest ZT value of 0.81 at 773 K, which is 1.6-fold higher than that of the pristine Cu1.8S sample due to the significantly reduced thermal conductivity by second phase and nanopores scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer: Complex thermoelectric materials. Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  2. M.G. Kanatzidis: Nanostructured thermoelectrics: The new paradigm?Chem. Mater. 22, 648 (2010).

    Article  CAS  Google Scholar 

  3. B.C. Sales: Smaller is cooler. Science 295, 1248 (2002).

    Article  CAS  Google Scholar 

  4. F.J. Disalvo: Thermoelectric cooling and power generation. Science 285, 703 (1999).

    Article  CAS  Google Scholar 

  5. G. Chen, M.S. Dresselhaus, and G. Dresselhaus: Recent developments in thermoelectric materials. Int. Mater. Rev. 1, 45 (2003).

    Article  Google Scholar 

  6. L.D. Zhao, B.P. Zhang, W.S. Liu, and J.F. Li: Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound. J. Appl. Phys. 105, 023704 (2009).

    Article  Google Scholar 

  7. M. Zhou, J.F. Li, and T. Kita: Nanostructured AgPb(m)SbTe(m +2) system bulk materials with enhanced thermoelectric performance. J. Am. Chem. Soc. 130, 4527 (2008).

    Article  CAS  Google Scholar 

  8. H. Wang, J.F. Li, C.W. Nan, M. Zhou, W.S. Liu, B.P. Zhang, and T. Kita: Enhanced thermoelectric properties in CoSb3−xTex alloys prepared by mechanical alloying and spark plasma sintering. Appl. Phys. Lett. 88, 092104 (2006).

    Article  Google Scholar 

  9. X. Shi, J. Yang, S.Q. Bai, J.H. Yang, H. Wang, M.F. Chi, J.R. Salvador, W.Q. Zhang, L.D. Chen, and W. Wong-Ng: On the design of high-efficiency thermoelectric clathrates through a systematic cross-substitution of framework elements. Adv. Funct. Mater. 20, 755 (2010).

    Article  CAS  Google Scholar 

  10. W.S. Liu, B.P. Zhang, L.D. Zhao, H.L. Zhang, and J.F. Li: Improvement of thermoelectric performance of CoSb3−xTex skutterudite compounds by additional substitution of IVB-group elements for Sb. Chem. Mater. 20, 7526 (2008).

    Article  CAS  Google Scholar 

  11. L.D. Zhao, J. He, D. Berardan, Y. Lin, J.F. Li, C.W. Nan, and N. Dragoe: BiCuSeO oxyselenides: New promising thermoelectric materials. Energy Environ. Sci. 7, 2900 (2014).

    Article  CAS  Google Scholar 

  12. A. Samarelli, L. Llin, S. Cecchi, J. Frigerio, D. Chrastina, G. Isella, E. Müller Gubler, T. Etzelstorfer, J. Stangl, Y. Zhang, J.M.R. Weaver, P.S. Dobson, and D.J. Paul: Prospects for SiGe thermoelectric generators. Solid-State Electron. 98, 70 (2014).

    Article  CAS  Google Scholar 

  13. B.A. Mansour: Electrical and thermoelectric properties of in and Cd doped Cu1.8S. Phys. Status Solidi A 136, 153 (1993).

    Article  CAS  Google Scholar 

  14. L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolvrton, V.P. Dravid, and M.G. Kanatzidis: Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373 (2014).

    Article  CAS  Google Scholar 

  15. Z.H. Ge, K. Wei, H. Lewis, J. Martin, and G.S. Nolas: Bottom-up processing and low temperature transport properties of polycrystalline SnSe. J. Solid State Chem. 225, 354 (2015).

    Article  CAS  Google Scholar 

  16. H.L. Liu, X. Shi, F.F. Xu, L.L. Zhang, W.Q. Zhang, L.D. Chen, Q. Li, C. Uher, T. Day, and G.J. Snyder: Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422 (2012).

    Article  Google Scholar 

  17. B. Zhong, Y. Zhang, W. Li, Z. Chen, J. Cui, W. Li, Y. Xie, Q. Hao, and Q. He: High superionic conduction arising from aligned large lamellae and large figure of merit in bulk Cu1.94Al0.02Se. Appl. Phys. Lett. 105, 123902 (2014).

    Article  Google Scholar 

  18. Z.H. Ge, B.P. Zhang, Z.X. Yu, Y. Liu, and J.F. Li: Synthesis and transport property of Cu1.8S as a promising thermoelectric compound. Chem. Commun. 47, 12697 (2012).

    Article  Google Scholar 

  19. Y. He, T. Day, T. Zhang, H. Liu, X. Shi, L. Chen, and G.J. Snyder: High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv. Mater. 26, 3974 (2014).

    Article  CAS  Google Scholar 

  20. Q. Jiang, H. Yan, Y. Shen, K. Simpson, and M.J. Reece: Enhancement of thermoelectric properties by atomic-scale percolation in digenite CuxS. J. Mater. Chem. A 2, 9486 (2014).

    Article  CAS  Google Scholar 

  21. S.N. Guin, J. Pan, A. Bhowmik, D. Sanyal, U.V. Waghmare, and K. Biswas: Temperature dependent reversible p–n–p type conduction switching with colossal change in thermopower of semiconducting AgCuS. J. Am. Chem. Soc. 136, 12712 (2014).

    Article  CAS  Google Scholar 

  22. S.N. Guin, D. Sanyal, and K. Biswas: The effect of order–disorder phase transitions and band gap evolution on the thermoelectric properties of AgCuS nanocrystals. Chem. Sci. 7, 534 (2016).

    Article  CAS  Google Scholar 

  23. S.N. Guin and K. Biswas: Temperature driven p–n–p type conduction switching materials: Current trends and future directions. Phys. Chem. Chem. Phys. 17, 10316 (2015).

    Article  CAS  Google Scholar 

  24. Y.B. Lou, A.C.S. Samia, J. Cowen, K. Banger, X. Chen, H. Lee, and C. Burda: Evaluation of the photoinduced electron relaxation dynamics of Cu1.8S quantum dots. Phys. Chem. Chem. Phys. 5, 1091 (2003).

    Article  CAS  Google Scholar 

  25. N. Morimoto and G. Kullerud: Polymorphism in digenite. Am. Mineral. 48, 110 (1963).

    CAS  Google Scholar 

  26. Z.H. Ge, X.Y. Liu, D. Feng, J.Y. Lin, and J.Q. He: High-performance thermoelectricity in nanostructured earth-abundant copper sulfides bulk materials. Adv. Energy Mater. 6, 1600607 (2016).

    Article  Google Scholar 

  27. L.D. Zhao, B.P. Zhang, W.S. Liu, H.L. Zhang, and J.F. Li: Enhanced thermoelectric properties of bismuth sulfide polycrystals prepared by mechanical alloying and spark plasma sintering. J. Solid State Chem. 181, 3278 (2008).

    Article  CAS  Google Scholar 

  28. L.J. Zheng, B.P. Zhang, H.Z. Li, J. Pei, and J.B. Yu: CuxS superionic compounds: Electronic structure and thermoelectric performance enhancement. J. Alloys Compd. 722, 17 (2017).

    Article  CAS  Google Scholar 

  29. Z.H. Ge, B.P. Zhang, P.P. Shang, Y-Q. Yu, C. Chen, and J-F. Li: Enhancing thermoelectric properties of polycrystalline Bi2S3 by optimizing a ball-milling process. J. Electron. Mater. 40, 1087 (2011).

    Article  CAS  Google Scholar 

  30. L. Zhao, X. Wang, F.Y. Fei, J. Wang, and Z. Cheng: High thermoelectric and mechanical performance in highly dense Cu2−xS bulks prepared by a melt-solidification technique. J. Mater. Chem. A, 3, 9432–9437 (2015).

    Article  CAS  Google Scholar 

  31. L. Zhao, B. Zhang, J. Li, M. Zhou, W. Liu, and J. Liu: Thermoelectric and mechanical properties of nano-SiC-dispersed Bi2Te3 fabricated by mechanical alloying and spark plasma sintering. J. Alloys Compd. 455, 259 (2008).

    Article  CAS  Google Scholar 

  32. Y. Gelbstein, G. Gotesman, Y. Lishzinker, Z. Dashevsky, and M.P. Dariel: Mechanical properties of PbTe-based thermoelectric semiconductors. Scr. Mater. 58, 251 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China (Grant No. 51501086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Hua Ge.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, P., Ge, ZH. & Feng, J. Effects of second phases on thermoelectric properties in copper sulfides with Sn addition. Journal of Materials Research 32, 3029–3037 (2017). https://doi.org/10.1557/jmr.2017.288

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.288

Navigation