Skip to main content

Advertisement

Log in

Deformation and fracture of a mudflat-cracked laser-fabricated oxide on Ti

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Concentrated heating of titanium by a focused laser beam in ambient atmosphere produces unique dielectric layers with characteristic colors dictated by film thickness and optical properties. A combination of microscopy and diffraction techniques employed to study the phase and microstructure of the oxide coatings showed that nanosecond-pulsed laser irradiation produces polycrystalline TiO films and underlying Ti6O interfacial layers. Mudflat cracking was prevalent in all coatings with most cracks extending through thickness to the metal substrate. Deformation and fracture behavior were probed by traditional nanoindentation methods with accompanying electron microscopy. These mixed titanium oxide coatings have moduli (~200 GPa) and hardnesses (~16 GPa) that are larger than the underlying metallic substrates. Fracture energies and residual stress have also been determined from pre-cracked films; fracture toughness and residual stress tend to decrease with decreasing laser fluence. Electrical contact resistance, measured with conductive nanoindentation, indicates a correlation between laser exposure, current–voltage behavior at constant load, and indentation response. Film conductance increases with decreasing laser fluence, likely due to the presence of defects, which act as a conduction path. Combining techniques provide a unique approach for defining electromechanical behavior and the resulting performance of the films in conditions that cause wear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wautelet M (1990) Appl Phys A 50:131. doi:10.1007/BF00343408

    Article  Google Scholar 

  2. Hongyu Z (2001) SIMTech Technical Report PT/01/005/AM. Singapore Institute of Manufacturing Technology, Singapore

    Google Scholar 

  3. Pérez del Pino A, Fernández-Pradas J, Serra P, Morenza J (2004) Surf Coat Technol 187:106. doi:10.1016/j.surfcoat.2004.02.001

    Article  Google Scholar 

  4. Gyorgy E, Perez del Pino A, Serra P, Morenza JL (2004) Appl Phys A 78:765. doi:10.1007/s00339-002-2054-8

    Article  Google Scholar 

  5. Wong MH, Cheng FT, Man HC (2007) Mater Lett 61:3391. doi:10.1016/j.matlet.2006.11.081

    Article  CAS  Google Scholar 

  6. Pérez del Pino A, Serra P, Morenza J (2002) Thin Solid Films 415:201. doi:10.1016/S0040-6090(02)00632-6

    Article  Google Scholar 

  7. Yilbas BS, Shuja SZ, Hashmi MSJ (2003) J Mater Process Technol 136:12. doi:0.1016/S0924-0136(02)00812-9

    Article  CAS  Google Scholar 

  8. Drory MD, Thouless MD, Evans AG (1988) Acta Metall 36:2019. doi:10.1016/0001-6160(88)90303-3

    Article  CAS  Google Scholar 

  9. Thouless MD (1990) Thin Solid Films 181:270. doi:10.1016/0040-6090(89)90508-7

    Google Scholar 

  10. Thouless MD, Olsson E, Gupta A (1992) Acta Metall Mater 40:1287. doi:10.1016/0956-7151(92)90429-I

    Article  CAS  Google Scholar 

  11. Hu MS, Evans AG (1989) Acta Metall 37:917. doi:10.1016/0001-6160(89)90018-7

    Article  CAS  Google Scholar 

  12. Thouless M (1990) J Am Ceram Soc 73:2144. doi:10.1111/j.1151-2916.1990.tb05290.x

    Article  Google Scholar 

  13. Schuh CA (2006) Mater Today 9:32. doi:10.1016/S1369-7021(06)71495-X

    Article  CAS  Google Scholar 

  14. Oliver WC, Pharr GM (1992) J Mater Res 7:1564. doi:10.1557/JMR.1992.1564

    Article  CAS  Google Scholar 

  15. Whitehead A, Page T (1992) Thin Solid Films 220:277. doi:10.1016/0040-6090(92)90585-Y

    Article  CAS  Google Scholar 

  16. Gerberich WW, Nelson JC, Lilleodden ET, Anderson P, Wyrobek JT (1996) Acta Mater 44:3585. doi:10.1016/1359-6454(96)00010-9

    Article  CAS  Google Scholar 

  17. Hainsworth S, McGurk M, Page T (1998) Surf Coat Technol 102:97. doi:10.1016/S0257-8972(97)00683-X

    Article  CAS  Google Scholar 

  18. Bahr DF, Kramer DE, Gerberich WW (1998) Acta Mater 46:3605. doi:10.1016/S1359-6454(98)00024-X

    Article  CAS  Google Scholar 

  19. Rodriguez-Marek D, Bahr D, Pang M (2003) Metall Mater A 34:1291. doi:10.1007/s11661-003-0240-8

    Article  Google Scholar 

  20. Boxley CJ, White HS, Gardner CE, Macpherson JV (2003) J Phys Chem 107:9677. doi:10.1021/jp034874u

    CAS  Google Scholar 

  21. Pang M, Eakins DE, Norton MG, Bahr DF (2001) Corrosion 57:523. doi:10.5006/1.3290378

    Article  CAS  Google Scholar 

  22. Jiang HG, Rühle M, Lavernia EJ (2011) J Mater Res 14:549. doi:10.1557/JMR.1999.0079

    Article  CAS  Google Scholar 

  23. Scherrer P (1918) Nachr Ges Wiss Göttingen 26:98

    Google Scholar 

  24. Bartkowski S, Neumann M, Kurmaev E, Fedorenko V, Shamin S, Cherkashenko V, Nemnonov S, Winiarski A, Rubie D (1997) Phys Rev B 56:10656. doi:10.1103/PhysRevB.56.10656

    Article  CAS  Google Scholar 

  25. Kramer D, Huang H, Kriese M, Robach J (1998) Acta Mater 47:333. doi:10.1016/S1359-6454(98)00301-2

    Article  Google Scholar 

  26. Tabor D (1951) The hardness of metals. Clarendon Press, Oxford

    Google Scholar 

  27. Morasch KR, Bahr DF (2007) Thin Solid Films 515:3298. doi:10.1016/j.tsf.2006.01.043

    Article  CAS  Google Scholar 

  28. Bahr DF, Woodcock CL, Pang M, Weaver KD, Moody NR (2003) Int J Fract 119(120):339. doi:10.1023/A:1024979030155

    Article  Google Scholar 

  29. Li J, Forberg S, Hermansson L (1991) Biomaterials 12:438. doi:10.1016/0142-9612(91)90015-3

    Article  CAS  Google Scholar 

  30. Latella BA, Gan BK, Li H (2007) Surf Coat Technol 201:6325. doi:10.1016/j.surfcoat.2006.11.037

    Article  CAS  Google Scholar 

  31. Thouless MD (1995) Annu Rev Mater 25:69. doi:10.1146/annurev.ms.25.080195.000441

    Article  CAS  Google Scholar 

  32. Khan RHU, Yerokhin AL, Matthews A (2008) Philos Mag 88:795. doi:10.1080/14786430801968603

    Article  CAS  Google Scholar 

  33. Lee C-C, Chen H-C, Jaing C-C (2006) Appl Opt 45:3091. doi:10.1364/AO.50.001945

    Article  CAS  Google Scholar 

  34. Major B, Ebner R, Zieba P, Wolczynski W (1999) Appl Phys A 923:921. doi:10.1007/s003399900273

    Article  Google Scholar 

  35. Kennedy MS, Moody NR, Adams DP, Clift M, Bahr DF (2008) Mater Sci Eng A 493:299. doi:10.1016/j.msea.2007.09.081

    Article  Google Scholar 

  36. Nowak R, Chrobak D, Nagao S (2009) Nat Nanotechnol 4:287. doi:10.1038/nnano.2009.49

    Article  CAS  Google Scholar 

  37. Holleman AF, Wiberg E (2001) Inorganic chemistry. Academic Press, San Diego

    Google Scholar 

  38. Kofstad P (1972) Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. Wiley-Interscience, New York

    Google Scholar 

  39. Lawrence SK, Stauffer DD, Major RC, Adams DP, Gerberich WW, Bahr DF, Moody NR (2012) MRS Proc 1424:73. doi:10.1557/opl.2012.819

    Article  Google Scholar 

  40. Huisman L, Carlsson A, Gelatt CD Jr, Ehrenreich H (1980) Phys Rev B 22:991. doi:10.1103/PhysRevB.22.991

    Article  CAS  Google Scholar 

  41. Valeeva A, Rempel A, Sprengel W, Schaefer H-E (2007) Phys Rev B 75:3. doi:10.1103/PhysRevB.75.094107

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Threat Reduction Agency, Basic Research Award # IACRO 10-4257I and by Sandia National Laboratories, a Lockheed Martin Company for the USDOE NNSA under contract DE-AC04-94AL85000. The authors would like to thank Mark Rodriguez, Paul Kotula, Vitalie Stavila, and Ray Friddle for their work and helpful discussions on microscopy and XRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Bahr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, S.K., Adams, D.P., Bahr, D.F. et al. Deformation and fracture of a mudflat-cracked laser-fabricated oxide on Ti. J Mater Sci 48, 4050–4058 (2013). https://doi.org/10.1007/s10853-013-7217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7217-9

Keywords

Navigation