Skip to main content
Log in

Investigation of the Deposition Time Effect on the Structural, Morphological, and Mechanical Properties of TiAlN Protective Thin Films

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Titanium aluminum nitride (TiAlN) thin films were deposited on glass and stainless steel substrate using a reactive DC magnetron sputtering system, with a mixture of pure nitrogen and argon gases, for different deposition times of 3, 5, and 7 min. The structural properties like phase’s formation and transition, elemental composition, and vibration modes were investigated by X-ray diffraction, energy-dispersive X-ray analysis, and Raman spectroscopy. The morphological properties were analyzed by scanning electron microscopy (SEM). The mechanical and tribological properties in terms of hardness and friction coefficient were determined using the nanoindentation technique and tribometer. It has been found that the films without nitrogen content have a crystalline structure, while the TiAlN films obtained after 3 and 5 min of deposition time exhibit amorphous structures. Films deposited after 7 min of deposition time have TiAlN and oxide phases. The Raman spectroscopy reveals the appearance of TO/LO and 2O modes for all layers and the acoustic modes of second order (2A) for only the TiAl films. SEM images show that the layer thicknesses do not change significantly; however, the film morphology changes with deposition time and becomes denser. The composition of all layers shows an increase of N content and a decrease of Al content, which affect the film mechanical properties. Results from mechanical characterization confirm that the hardness and Young modulus increase with increasing nitrogen content and decreasing Al content, while the friction coefficient significantly decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Camps, J.S. Restrepo, S. Muhl, J.G. Quiñones-Galván, J. Mater. Sci. Eng. B. 5, 331–339 (2015). https://doi.org/10.17265/2161-6221/2015.7-8.012

    Article  Google Scholar 

  2. C.-L. Chang, F.-C. Yang, Surf. Coat. Technol. 352, 330–337 (2018). https://doi.org/10.1016/j.surfcoat.2018.08.023

    Article  Google Scholar 

  3. K.V. Chauhan, S.K. Rawal, Aust. J. Mech. Eng. 2204–2253 (2017). https://doi.org/10.1080/14484846.2017.1326213

  4. W. Tillmann, S. Momeni, F. Hoffmann, Tribol. Int. 66, 324–329 (2013). https://doi.org/10.1016/j.triboint.2013.06.007

    Article  Google Scholar 

  5. V. Braic, C.N. Zoita, M. Balaceanu, A. Kiss, A. Vladescu, A. Popescu, Surf. Coat. Technol. 204, 1925–1928 (2010). https://doi.org/10.1016/j.surfcoat.2009.08.011

    Article  Google Scholar 

  6. R. Jalali, M. Parhizkar, H. Bidadi, H. Naghshara, S.R. Hosseini, J. Kor. Phys. Soc. 66, 978–983 (2015). https://doi.org/10.3938/jkps.66.978

    Article  ADS  Google Scholar 

  7. S.K. Kim, P.V. Vinh, J.H. Kim, T. Ngoc, Surf. Coat. Technol. 200, 1391–1394 (2005). https://doi.org/10.1016/j.surfcoat.2005.08.109

    Article  Google Scholar 

  8. L. Chen, Y. Yang, M.J. Wu, Y.X. Xu, Y. Du, S. Kolozsvári, Surf. Coat. Technol. 275, 309–315 (2015). https://doi.org/10.1016/j.surfcoat.2015.04.048

    Article  Google Scholar 

  9. A. Kimura, T. Murakami, K. Yamada, T. Suzuki, Thin Solid Films. 382, 101–105 (2001). https://doi.org/10.1016/j.surfcoat.2005.08.109

    Article  ADS  Google Scholar 

  10. K. Chakrabarti, J.J. Jeong, S.K. Hwang, Y.C. Yoo, C.M. Lee, Thin Solid Films. 406, 159–163 (2002). https://doi.org/10.1016/S0040-6090(01)01791-6

    Article  ADS  Google Scholar 

  11. M. Keunecke, C. Stein, K. Bewilogua, W. Koelker, D. Kassel, H. van den Berg, Surf. Coat. Technol. 205, 1273–1278 (2010). https://doi.org/10.1016/j.surfcoat.2010.09.023

    Article  Google Scholar 

  12. X. Zhou, A. Wu, W. Qu, X. Jiang, Rare Metals. 31, 178–182 (2012). https://doi.org/10.1007/s12598-012-0487-6

    Article  Google Scholar 

  13. V. Chawla, R. Chandra, R. Jayaganthan, J. Alloy. Compd. 507, 47–53 (2010). https://doi.org/10.1016/j.jallcom.2010.08.017

    Article  Google Scholar 

  14. T. Shimizu, Y. Teranishi, K. Morikawa, H. Komiya, T. Watanabe, H. Nagasaka, M. Yang, Thin Solid Films. 581, 39–47 (2015). https://doi.org/10.1016/j.tsf.2014.11.076

    Article  ADS  Google Scholar 

  15. R. Ramadoss, N. Kumar, R. Pandian, S. Dash, T.R. Ravindran, D. Arivuoli, A.K. Tyagi, Tribol. Int. 66, 143–149 (2013). https://doi.org/10.1016/j.triboint.2013.05.001

    Article  Google Scholar 

  16. M. Donald, Mattox, Handbook of physical vapor deposition (PVD) processing (Elsevier, Book Second edition, 2010), pp. 49–70

    Google Scholar 

  17. I.V. Zolotukhin, E.K. Yu, Sov. Phys. Uspekhi. 33, 720 (1990). https://doi.org/10.1070/PU1990v033n09ABEH002628

    Article  ADS  Google Scholar 

  18. S. Das, S. Guha, R. Ghadai, D. Kumar, B.P. Swain, Appl. Phys. A 123, 412 (2017). https://doi.org/10.1007/s00339-017-1032-0

    Article  ADS  Google Scholar 

  19. H. Huang, Z. Lin, M. Wang, C. Xi, Mater. Sci. Forum. 816, 283–288 (2015). https://doi.org/10.4028/www.scientific.net/MSF.816.283

    Article  Google Scholar 

  20. H.C. Barshilia, K.S. Rajam, J. Mater. Res. 19, 3196–3205 (2004). https://doi.org/10.1557/JMR.2004.0444

    Article  ADS  Google Scholar 

  21. B. Subramanian, K. Ashok, P. Kuppusami, C. Sanjeeviraja, M. Jayachandran, Cryst. Res. Technol. 43, 1078–1082 (2008). https://doi.org/10.1002/crat.200811175

    Article  Google Scholar 

  22. X. Liu, F. Yuan, Y. Wei, Appl. Surf. Sci. 279, 159–166 (2013). https://doi.org/10.1016/j.apsusc.2013.04.062

    Article  ADS  Google Scholar 

  23. S. Asgary, M. Ghoranneviss, A. Mahmoodi, S. Zarein-dolab, J. Inorg. Organomet. Polym. Mater. 28, 428–438 (2018). https://doi.org/10.1007/s10904-017-0603-z

    Article  Google Scholar 

  24. A. Fawad, S.P. Beom, S.K. Joon, The impact of surface morphology on TiAlN film’s properties. J. Ceram. Process. Res. 14, 529–534 (2013)

    Google Scholar 

  25. A. Hörling, L. Hultman, M. Odén, J. Sjölén, L. Karlsson, Surf. Coat. Technol. 191, 384 (2005). https://doi.org/10.1016/j.surfcoat.2004.04.056

    Article  Google Scholar 

  26. T. Ikeda, H. Satoh, Thin Solid Films. 195, 99–110 (1991). https://doi.org/10.1016/0040-6090(91)90262-V

    Article  ADS  Google Scholar 

  27. J. Musil, Surf. Coat. Technol. 207, 50–65 (2012). https://doi.org/10.1016/j.surfcoat.2012.05.073

    Article  MathSciNet  Google Scholar 

  28. F. Lekoui, M. Ouchabane, H. Akkari, S. Hassani, D. Dergham, Mater. Res. Express. 5, 106406 (2018). https://doi.org/10.1088/2053-1591/aadafa

    Article  ADS  Google Scholar 

  29. F. Lekoui, S. Hassani, M. Ouchabane, H. Akkari, D. Dergham, W. Filali, E. Garoudja, Elaboration and characterization of Mg-doped ZnO thin film by thermal evaporation: annealing temperature effect. Braz. J. Phys. 1–9 (2021). https://doi.org/10.1007/s13538-021-00866-y

  30. A. Erdemir, Tribol. Lett. 8, 97–102 (2000). https://doi.org/10.1023/A:1019183101329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fouaz Lekoui.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekoui, F., Hassani, S., Amrani, R. et al. Investigation of the Deposition Time Effect on the Structural, Morphological, and Mechanical Properties of TiAlN Protective Thin Films. Braz J Phys 52, 196 (2022). https://doi.org/10.1007/s13538-022-01200-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-022-01200-w

Keywords

Navigation