Skip to main content
Log in

A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques

  • Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Experiments were conducted to evaluate the microstructures and mechanical properties of a Cu–0.1 % Zr alloy processed using two different techniques of severe plastic deformation: equal-channel angular pressing (ECAP) and high-pressure torsion (HPT). The samples were processed at room temperature through ECAP for eight passes or through HPT for 10 turns. The results show HPT is more effective both in refining the grains and in producing a large fraction of grain boundaries having high angles of misorientation. Both procedures produce reasonably homogeneous hardness distributions but the average hardness values were higher after HPT. In tensile testing at 673 K, the highest strength and ductility was achieved after processing by HPT. This is attributed to the grain stability and high fraction of high-angle grain boundaries produced in HPT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:104

    Article  Google Scholar 

  2. Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33

    Article  Google Scholar 

  3. Zhu Y, Valiev RZ, Langdon TG, Tsuji N, Lu K (2010) MRS Bull 35:977

    Article  CAS  Google Scholar 

  4. Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881

    Article  CAS  Google Scholar 

  5. Zhilyaev AP, Langdon TG (2008) Prog Mater Sci 53:893

    Article  CAS  Google Scholar 

  6. Zhilyaev AP, Kim BK, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Scr Mater 46:575

    Article  CAS  Google Scholar 

  7. Zhilyaev AP, Kim BK, Szpunar JA, Baró MD, Langdon TG (2005) Mater Sci Eng A391:377

    CAS  Google Scholar 

  8. Tian YZ, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2011) Mater Sci Eng A528:4331

    CAS  Google Scholar 

  9. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A257:328

    CAS  Google Scholar 

  10. Tian YZ, Duan QQ, Yang HJ, Zou HF, Yang G, Wu SD, Zhang ZF (2010) Metall Mater Trans A 41A:2290

    Article  CAS  Google Scholar 

  11. Kawasaki M, Horita Z, Langdon TG (2009) Mater Sci Eng A524:143

    CAS  Google Scholar 

  12. Xu C, Horita Z, Langdon TG (2011) Mater Sci Eng A528:6059

    Google Scholar 

  13. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317

    Article  CAS  Google Scholar 

  14. Oh-ishi K, Horita Z, Furukawa M, Nemoto M, Langdon TG (1998) Metall Mater Trans A 29A:2011

    Article  CAS  Google Scholar 

  15. Gholinia A, Prangnell PB, Markushev MV (2000) Acta Mater 48:1115

    Article  CAS  Google Scholar 

  16. Furukawa M, Horita Z, Langdon TG (2002) Mater Sci Eng A332:97

    CAS  Google Scholar 

  17. Lugo N, Llorca N, Cabrera JM, Horita Z (2008) Mater Sci Eng A477:366

    CAS  Google Scholar 

  18. Goto M, Han SZ, Kawagoishi M, Kim SS (2008) Mater Lett 62:2832

    Article  CAS  Google Scholar 

  19. Hasegawa H, Komura S, Utsunomiya A, Horita Z, Furukawa M, Nemoto M, Langdon TG (1999) Mater Sci Eng A265:188

    CAS  Google Scholar 

  20. Lee S, Berbon PB, Furkawa M, Horita Z, Nemoto M, Tsenev NK, Valiev RZ, Langdon TG (1999) Mater Sci Eng A272:63

    CAS  Google Scholar 

  21. Lee S, Utsunomiya A, Akamatsu H, Neishi K, Furukawa M, Horita Z, Langdon TG (2002) Acta Mater 50:553

    Article  CAS  Google Scholar 

  22. Wongsa-Ngam J, Kawasaki M, Langdon TG (2012) Mater Sci Eng A556:526

    Google Scholar 

  23. Wongsa-Ngam J, Kawasaki M, Zhao Y, Langdon TG (2011) Mater Sci Eng A528:7715

    Google Scholar 

  24. Wongsa-Ngam J, Kawasaki M, Langdon TG (2012) J Mater Sci 47:7782

    Article  CAS  Google Scholar 

  25. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143

    Article  CAS  Google Scholar 

  26. Figueiredo RB, Cetlin PR, Langdon TG (2011) Mater Sci Eng A528:8198

    Google Scholar 

  27. Figueiredo RB, Pereira PHR, Aguilar MTP, Cetlin PR, Langdon TG (2012) Acta Mater 60:3190

    Article  CAS  Google Scholar 

  28. Kawasaki M, Langdon TG (2008) Mater Sci Eng A498:341

    CAS  Google Scholar 

  29. Berbon PB, Furukawa M, Horita Z, Nemoto M, Langdon TG (1999) Metall Mater Trans A 30A:1989

    Article  CAS  Google Scholar 

  30. Loucif A, Figueiredo RB, Kawasaki M, Baudin T, Brisset F, Chemam R, Langdon TG (2012) J Mater Sci 47:7815

    Article  CAS  Google Scholar 

  31. Zhao YH, Guo YZ, Wei Q, Topping TD, Dangelewicz AM, Zhu YT, Langdon TG, Lavernia EJ (2009) Mater Sci Eng A525:68

    CAS  Google Scholar 

  32. Sakai G, Horita Z, Langdon TG (2004) Mater Trans 45:3079

    Article  CAS  Google Scholar 

  33. Xu C, Száraz Z, Trojanová Z, Lukáč P, Langdon TG (2008) Mater Sci Eng A497:206

    CAS  Google Scholar 

  34. Neishi K, Horita Z, Langdon TG (2003) Mater Sci Eng A352:129

    CAS  Google Scholar 

  35. Horita Z, Smith DJ, Furukawa M, Nemoto M, Valiev RZ, Langdon TG (1996) J Mater Res 11:1880

    Article  CAS  Google Scholar 

  36. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Metall Mater Trans A 29A:2503

    Article  CAS  Google Scholar 

  37. Kužel R, Janeček M, Matěj Z, Čížek J, Dopita M, Srba O (2010) Metall Mater Trans A 41A:1174

    Google Scholar 

  38. Salimyanfard F, Toroghinejad MR, Ashrafizadeh F, Jafari M (2011) Mater Sci Eng A528:5348

    Google Scholar 

  39. Dobatkin SV, Szpunar JA, Zhilyaev AP, Cho JY, Kuznetsov AA (2007) Mater Sci Eng A462:132

    CAS  Google Scholar 

  40. Hall EO (1951) Proc R Soc B 64:747

    Google Scholar 

  41. Petch NJ (1953) J Iron Steel Inst 174:25

    CAS  Google Scholar 

  42. Ashby MF, Jones DRH (1980) Engineering materials, vol 1. Pergamon, Oxford, p 105

    Google Scholar 

  43. Furukawa M, Horita Z, Nemoto M, Valiev RZ, Langdon TG (1998) Philos Mag A 78:203

    CAS  Google Scholar 

  44. Figueiredo RB, Langdon TG (2006) Mater Sci Eng A430:151

    CAS  Google Scholar 

  45. Xu C, Langdon TG (2003) Scr Mater 48:1

    Article  CAS  Google Scholar 

  46. Xu C, Furukawa M, Horita Z, Langdon TG (2005) Mater Sci Eng A398:66

    CAS  Google Scholar 

  47. Prell M, Xu C, Langdon TG (2008) Mater Sci Eng A480:449

    CAS  Google Scholar 

  48. Alhajeri SN, Gao N, Langdon TG (2011) Mater Sci Eng A528:3833

    CAS  Google Scholar 

  49. Sordi VL, Ferrente M, Kawasaki M, Langdon TG (2012) J Mater Sci 47:7870

    Article  CAS  Google Scholar 

  50. Zhilyaev AP, Nurislamova GV, Kim BK, Baró MD, Szpunar JA, Langdon TG (2003) Acta Mater 51:753

    Article  CAS  Google Scholar 

  51. Xu C, Horita Z, Langdon TG (2007) Acta Mater 55:203

    Article  CAS  Google Scholar 

  52. Xu C, Horita Z, Langdon TG (2008) Acta Mater 56:5168

    Article  CAS  Google Scholar 

  53. Kawasaki M, Ahn B, Langdon TG (2010) Acta Mater 58:919

    Article  CAS  Google Scholar 

  54. Loucif A, Figueiredo RB, Baudin T, Brisset F, Langdon TG (2010) Mater Sci Eng A527:4864

    CAS  Google Scholar 

  55. Sabbaghianrad S, Kawasaki M, Langdon TG (2012) J Mater Sci 47:7789

    Article  CAS  Google Scholar 

  56. Huang JY, Zhu YT, Jiang H, Lowe TC (2001) Acta Mater 49:1497

    Article  CAS  Google Scholar 

  57. Zhu YT, Huang JY, Gubicza J, Ungár T, Wang YM, Ma E, Valiev RZ (2003) J Mater Res 18:1908

    Article  CAS  Google Scholar 

  58. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5

    Article  CAS  Google Scholar 

  59. Ovid’ko IA, Langdon TG (2012) Rev Adv Mater Sci 30:103

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation of the United States under Grant No. DMR-1160966 and in part by the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jittraporn Wongsa-Ngam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wongsa-Ngam, J., Kawasaki, M. & Langdon, T.G. A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J Mater Sci 48, 4653–4660 (2013). https://doi.org/10.1007/s10853-012-7072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-7072-0

Keywords

Navigation