Skip to main content
Log in

Comparative study: the effect of annealing conditions on the properties of P3HT:PCBM blends

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper presents a detailed study on the role of various annealing treatments on organic poly(3-hexylthiophene) and [6]-phenyl-C61-butyric acid methyl ester blends under different experimental conditions. A combination of analytical tools is used to study the alteration of the phase separation, structure and photovoltaic properties of the P3HT:PCBM blend during the annealing process. Results showed that the thermal annealing yields PCBM “needle-like” crystals and that prolonged heat treatment leads to extensive phase separation, as demonstrated by the growth in the size and quantity of PCBM crystals. The substrate annealing method demonstrated an optimal morphology by eradicating and suppressing the formation of fullerene clusters across the film, resulting in longer P3HT fibrils with smaller diameter. Improved optical constants, PL quenching and a decrease in the P3HT optical bad-gap were demonstrated for the substrate annealed films due to the limited diffusion of the PCBM molecules. An effective strategy for determining an optimized morphology through substrate annealing treatment is therefore revealed for improved device efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lungenschmied C, Dennler G, Neugebauer H, Sariciftci NS, Glatthaar M, Meyer T, Meyer A (2007) Sol Energy Mater Sol Cells 91:379

    Article  CAS  Google Scholar 

  2. Tipnis R, Bernkopf J, Jia S, Krieg J, Li S, Storch M, Laird D (2009) Sol Energy Mater Sol Cells 93:442

    Article  CAS  Google Scholar 

  3. Blankenburg L, Schultheis K, Schache H, Sensfuss S, Schrödner M (2009) Sol Energy Mater Sol Cells 93:476

    Article  CAS  Google Scholar 

  4. Krebs FC, Jørgensen M, Norrman K, Hagemann O, Alstrup J, Nielsen TD, Fyenbo J, Larsen K, Kristensen J (2009) Sol Energy Mater Sol Cells 93:422

    Article  CAS  Google Scholar 

  5. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Adv Funct Mater 151:617

    Google Scholar 

  6. Aïch BR et al (2012) Org Electron. http://dx.doi.org/10.1016/j.orgel.2012.05.001

  7. Konarka Technologies home page. http://www.konarka.com/index.php/site/pressreleasedetail/konarkas_power_plastic_achieves_world_record_83_efficiency_certification_fr. Accessed 16 June 12

  8. Mitsubishi Chemical Corporation Homepage. http://www.mitsubishichemhd.co.jp/english/news_release/index.html. Accessed 16 June 2012

  9. Krebs FC (2008) Sol Energy Mater Sol Cells 92:715

    Article  CAS  Google Scholar 

  10. Krebs FC, Nielsen TD, Fyenbo J, Wadstrøm M, Pedersen MS (2010) Energy Environ Sci 3:512

    Article  CAS  Google Scholar 

  11. Krebs FC, Fyenbo J, Jørgensen M (2010) J Mater Chem 20:8994

    Article  CAS  Google Scholar 

  12. Hoppe H, Sariciftci NS (2006) J Mater Chem 16:45

    Article  CAS  Google Scholar 

  13. Padinger F, Rittberger RS, Sariciftci NS (2003) Adv Funct Mater 13:85

    Article  CAS  Google Scholar 

  14. Ma W, Yang C, Heeger AJ (2007) Adv Mater 19:1387

    Article  CAS  Google Scholar 

  15. Motaung DE, Malgas GF, Arendse CJ (2011) J Mater Sci 46:4942. doi:10.1007/s10853-011-5408-9

    Article  CAS  Google Scholar 

  16. Jeon JH, Lee HK, Wang DH, Park JH, Park OO (2012) Sol Energy Mater Sol Cells 102:196

    Article  CAS  Google Scholar 

  17. Shen Y-M, Chen C-S, Yang P-C, Ma S-Y, Lin C-F (2012) Sol Energy Mater Sol Cells 99:263

    Article  CAS  Google Scholar 

  18. Peet J, Soci C, Coffin RC, Nguyen TQ, Mikhailovsky A, Moses D, Bazan GC (2006) Appl Phys Lett 89:252105

    Article  Google Scholar 

  19. Chen F-C, Tseng H-C, Ko C-J (2008) Appl Phys Lett 92:103316

    Article  Google Scholar 

  20. Lee JK, Ma WL, Brabec CJ, Yuen J, Moon JS, Kim JY, Lee K, Bazan GC, Heeger AJ (2008) J Am Chem Soc 130:3619

    Article  CAS  Google Scholar 

  21. Moulé AJ, Meerholz K (2008) Adv Mater 20:240

    Article  Google Scholar 

  22. Motaung DE, Malgas GF, Arendse CJ (2010) Synth Met 160:876

    Article  CAS  Google Scholar 

  23. Reisdorffer F, Haas O, Le Rendu P, Nguyen TP (2012) Synth Met 161:2544

    Article  Google Scholar 

  24. Li G, Shrotriya V, Yao Y, Huang J, Yang Y (2007) J Mater Chem 17:3126

    Article  CAS  Google Scholar 

  25. Cugola R, Giovanella U, DiGianvincenzo P, Bertini F, Catellani M, Luzzati S (2006) Thin Solid Films 511–512:489

    Article  Google Scholar 

  26. Madsen MV, Sylvester-Hvid KO, Dastmalchi B, Hingerl K, Norrman K, Tromholt T, Manceau M, Angmo D, Krebs FC (2011) J Phys Chem C 115:10817

    Article  CAS  Google Scholar 

  27. Woollam JA (2008) Inc. Complete Ease™ Data Analysis Manual

  28. Jellison GE (1993) Thin Solid Films 234:416

    Article  CAS  Google Scholar 

  29. Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Adv Funct Mater 15:1193

    Article  CAS  Google Scholar 

  30. Chirvase D, Parisi J, Hummelen JC, Dyakonov V (2004) Nanotechnology 15:1317

    Article  CAS  Google Scholar 

  31. Cullity D (1956) Elements of X-ray diffraction. Addison-Wesley, Reading

    Google Scholar 

  32. Malgas GF, Motaung DE, Arendse CJ (2012) J Mater Sci 47:4282. doi:10.1007/s10853-012-6278-5

    Article  CAS  Google Scholar 

  33. Swinnen A, Haeldermans I, vande Ven M, D’Haen J, Vanhoyland G, Aresu S, D’Olieslaeger M, Manca J (2006) Adv Funct Mater 16:760

    Article  CAS  Google Scholar 

  34. Bull TA, Pingree LSC, Jenekhe SA, Ginger DS, Luscombe CK (2009) ACS Nano 3:627

    Article  CAS  Google Scholar 

  35. Singh RK, Kumara J, Singh R, Kant R, Chand S, Kumar V (2007) Mater Chem Phys 104:390

    Article  CAS  Google Scholar 

  36. Motaung DE, Malgas GF, Arendse CJ, Malwela T (2010) Mater Chem Phys 124:208

    Article  CAS  Google Scholar 

  37. Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin PG, Kim Y, Anthopoulos TD, Stavrinou PN, Bradley DDC, Nelson J (2008) Nat Mater 7:158

    Article  CAS  Google Scholar 

  38. Chang L, Lademann HWA, Bonekamp J-B, Meerholz K, Moulé AJ (2011) Adv Funct Mat 21:1779

    Article  CAS  Google Scholar 

  39. Erb T, Zhokhavets U, Hoppe H, Gobsch G, Al-Ibrahim M, Ambacher O (2006) Thin Solid Films 511–512:483

    Article  Google Scholar 

  40. Björström CM, Nilsson S, Bernasik A, Budkowski A, Andersson M, Magnusson KO, Moons E (2007) Appl Surf Sci 253:3906

    Article  Google Scholar 

  41. Wang X, Ederth T, Inganas O (2006) Langmuir 22:9287

    Article  CAS  Google Scholar 

  42. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, McCulloch I, Ha C-S, Lee M (2006) Nat Mater 5:197

    Article  CAS  Google Scholar 

  43. Harris DC, Bertolucci MD (1978) Symmetry and spectroscopy. Oxford University Press, New York

    Google Scholar 

  44. Motaung DE, Malgas GF, Arendse CJ, Mavundla SE (2012) Mater Chem Phys 135:401

    Article  CAS  Google Scholar 

  45. Lioudakis E, Othonos A, Alexandrou I, Hayashi Y (2007) Appl Phys Lett 91:111117

    Article  Google Scholar 

  46. Karagiannidis PG, Georgiou D, Pitsalidis C, Laskarakis A, Logothetidis S (2011) Mater Chem Phys 129:1207

    Article  CAS  Google Scholar 

  47. Motaung DE, Malgas GF, Arendse CJ (2010) J Mater Sci 45:3276. doi:10.1007/s10853-010-4339-1

    Article  CAS  Google Scholar 

  48. Bagienski W, Gupta MC (2011) Sol Energy Mater Sol Cells 95:933

    Article  CAS  Google Scholar 

  49. Motaung DE, Malgas GF, Arendse CJ, Mavundla SE, Knoesen D, Oliphant CJ (2009) Sol Energy Mater Sol Cells 93:1674

    Article  CAS  Google Scholar 

  50. Zhang F, Zhuo Z, Zhang J, Wang X, Xu X, Wang Z, Xin Y, Wang J, Wang J, Tang W, Xu Z, Wang Y (2012) Sol Energy Mater Sol Cells 97:71

    Article  CAS  Google Scholar 

  51. Motaung DE, Malgas GF, Arendse CJ, Mavundla SE, Knoesen D (2009) Mater Chem Phys 116:279

    Article  CAS  Google Scholar 

  52. Wang T-L, Yeh A-C, Yang C-H, Shieh Y-T, Chen W-J, Ho T-H (2011) Sol Energy Mater Sol Cells 95:3295

    Article  CAS  Google Scholar 

  53. Parlak EA (2012) Sol Energy Mater Sol Cells 100:174

    Article  CAS  Google Scholar 

  54. Ho C-S, Huang E-L, Hsu W-C, Lee C-S, Lai Y-N, Yao E-P, Wang C-W (2012) Synth Met 162:1164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Department of Science and Technology (DST) and the Council for Scientific and Industrial Research (CSIR) (Project Nos. HGER28P and HGER27S).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David E. Motaung or Gerald F. Malgas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1577 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motaung, D.E., Malgas, G.F., Nkosi, S.S. et al. Comparative study: the effect of annealing conditions on the properties of P3HT:PCBM blends. J Mater Sci 48, 1763–1778 (2013). https://doi.org/10.1007/s10853-012-6937-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6937-6

Keywords

Navigation