Skip to main content
Log in

Insights into the stability and thermal degradation of P3HT:C60 blended films for solar cell applications

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper demonstrates the changes in the nanoscale morphology of the blended films induced by a diffusion of C60 molecules and degradation during longer thermal treatment above the glass transition temperature (130 °C). The results showed that the film morphology, including the size and population of poly(3-hexylthiophene) (P3HT) crystallites, rapidly reduced with annealing time. A large-scale (>1μm) C60 aggregation, demonstrating a bulky phase separation between the polymer and C60, was identified after 5 h annealing, which resulted in a degradation of charge carrier mobility and conductivity. X-ray diffraction verifies that the interchain packing of P3HT within the crystallized phase improved with an increasing in annealing time, but the volume fraction of the P3HT (100) phase normal to substrate increased up to 3 h and decreased at longer annealing times resulting in the ageing of the films. Changes in the infrared spectra of the extended annealed samples were recorded and the oxidation products were identified. A degradation mechanism that accounted for the modifications in the infrared spectra and a detachment of the hexyl chain from P3HT was demonstrated, resulting in chain cutting, conjugation loss and a reduction in the UV–vis absorbance. The morphology change with the annealing time resulted in an abrupt decrease in the PCE of P3HT:C60 solar cells. These findings signify that the stability of P3HT:C60 solar cells cannot be secured for longer annealing period owing to the unsettled morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sariciftci NS, Smilowitz LB, Heeger AJ, Wudl F (1992) Science 258:1474

    Article  CAS  Google Scholar 

  2. Antoniadis H, Hsieh BR, Abkowitz MA, Jenekhe SA, Stolka M (1994) Synth Met 62:265

    Article  CAS  Google Scholar 

  3. Tang CW (1986) Appl Phys Lett 48:183

    Article  CAS  Google Scholar 

  4. Ryu MS, Cha HJ, Jang J (2010) Curr Appl Phys 10:S206

    Article  Google Scholar 

  5. Ma W, Yang C, Gong X, Lee KH, Heeger AJ (2005) Adv Funct Mater 15:1617

    Article  CAS  Google Scholar 

  6. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DDC, Giles M, Mcculloch I, Ha C-S, Ree M (2006) Nat Mater 5:197

    Article  CAS  Google Scholar 

  7. Hoppe H, Sariciftci NS (2006) J Mater Chem 16:45

    Article  CAS  Google Scholar 

  8. Kim Y, Choulis SA, Nelson J, Bradley DDC, Cook S, Durrant JR (2005) J Mater Sci 40:1371. doi:10.1007/s10853-005-0568-0

    Article  CAS  Google Scholar 

  9. Kim JY, Lee K, Coates NE, Moses D, Nguyen T-Q, Dante M, Heeger AJ (2007) Science 317:222

    Article  CAS  Google Scholar 

  10. Koster LJA, Mihailetchi VD, Blom PWM (2006) Appl Phys Lett 88:093511

    Article  Google Scholar 

  11. Scharber MC, Muhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Adv Mater 18:789

    Article  CAS  Google Scholar 

  12. Lungenschmied C, Dennler G, Neugebauer H, Sariciftci NS, Glatthaar M, Meyer T, Meyer A (2007) Sol Energy Mater Sol Cells 91:379

    Article  CAS  Google Scholar 

  13. Krebs FC, Spanggaard H (2005) Chem Mater 17:5235

    Article  CAS  Google Scholar 

  14. Krebs FC, Norrman K (2007) Prog Photovolt Res Appl 15:697

    Article  CAS  Google Scholar 

  15. Katz EA, Gevorgyan S, Orynbayev MS, Krebs FC (2007) Eur Phys J Appl Phys 36:307

    Article  Google Scholar 

  16. Padinger F, Fromherz T, Denk P, Brabec CJ, Zettner J, Hierl T, Sariciftci NS (2001) Synth Met 121:1605

    Article  CAS  Google Scholar 

  17. Krebs FC (2008) Sol Energy Mater Sol Cells 92:715

    Article  CAS  Google Scholar 

  18. Jørgensen M, Norrman K, Krebs FC (2008) Sol Energy Mater Sol Cells 92:686

    Article  Google Scholar 

  19. Schuller S, Schilinsky P, Hauch J, Brabec CJ (2004) Appl Phys A 79:37

    Article  CAS  Google Scholar 

  20. De Bettignies R, Leroy F, Firon M, Sentein C (2006) Synth Met 156:510

    Article  Google Scholar 

  21. Bertho S, Janssen G, Cleij TJ, Conings B, Moons W, Gadisa A, D’Haena J, Goovaerts E, Lutsen L, Manca J, Vanderzande D (2008) Sol Energy Mater Sol Cells 92:753

    Article  CAS  Google Scholar 

  22. Ruoff RS, Tse DS, Malhotra R, Lorents DC (1993) J Phys Chem 97:3379

    Article  CAS  Google Scholar 

  23. Chirvase D, Parisi J, Hummelen JC, Dyakonov V (2004) Nanotechnology 15:1317

    Article  CAS  Google Scholar 

  24. Klimov E, Li W, Yang X, Hoffmann GG, Loos J (2006) Macromolecules 39:4493

    Article  CAS  Google Scholar 

  25. Savenije TJ, Kroeze JE, Yang X, Loos J (2005) Adv Funct Mater 15:1260

    Article  CAS  Google Scholar 

  26. Swinnen A, Haeldermans I, van de Ven M, D’Haen J, Vanhoyland G, Aresu S, D’Olieslaeger M, Manca J (2006) Adv Funct Mater 16:760

    Article  CAS  Google Scholar 

  27. Miyanishi S, Tajima K, Hashimoto K (2009) Macromolecules 42:1610

    Article  CAS  Google Scholar 

  28. Erb T, Zhokhavets U, Gobsch G, Raleva S, Stuhn B, Schilinsky P, Waldauf C, Brabec CJ (2005) Adv Funct Mater 15:1193

    Article  CAS  Google Scholar 

  29. Motaung DE, Malgas GF, Arendse CJ, Malwela T (2010) Mater Chem Phys 124:208

    Article  CAS  Google Scholar 

  30. Li G, Yao Y, Yang H, Shirotriya V, Yang G, Yang Y (2007) Adv Funct Mater 17:1636

    Article  Google Scholar 

  31. Motaung DE, Malgas GF, Arendse CJ, Mavundla SE, Oliphant CJ, Knoesen D (2009) Sol Energy Mater Sol Cells 93:1674

    Article  CAS  Google Scholar 

  32. Brown PJ, Thomas DS, Kohler A, Wilson JS, Kim J-S, Ramsdale CM, Sirringhaus H, Friend RH (2003) Phys Rev B 67:064203

    Article  Google Scholar 

  33. Malgas GF, Arendse CJ, Mavundla SE, Cummings FR (2008) J Mater Sci 43:5599. doi:10.1007/s10853-008-2797-5

    Article  CAS  Google Scholar 

  34. Han Z, Zhang J, Yang X, Zhu H, Cao W (2010) J Mater Sci 45:3866. doi:10.1007/s10853-010-4442-3

    Article  CAS  Google Scholar 

  35. Furukawa Y, Akimoto M, Harada I (1987) Synth Met 18:151

    Article  CAS  Google Scholar 

  36. Trznadel M, Pron A, Zagorska M, Chrzaszcz R, Pielichowski J (1998) Macromolecules 31:5051

    Article  CAS  Google Scholar 

  37. Motaung DE, Malgas GF, Arendse CJ, Mavundla SE, Knoesen D (2009) Mater Chem Phys 116:279

    Article  CAS  Google Scholar 

  38. Manceau M, Rivaton A, Gardette J-L, Guillerez S, Lemaıtre N (2009) Polym Degrad Stab 94:898

    Article  CAS  Google Scholar 

  39. Manceau M, Chambon S, Gardette J-L, Guillerez S, Lemaitre N (2010) Sol Energy Mater Sol Cells 94:1572

    Article  CAS  Google Scholar 

  40. Chambon S, Rivaton A, Gardette J-L, Firon M (2007) Sol Energy Mater Sol Cells 91:394

    Article  CAS  Google Scholar 

  41. Gustafsson G, Inganas O, Nilsson JO (1989) Synth Met 28:427

    Article  Google Scholar 

  42. Motaung DE, Malgas GF, Arendse CJ, Mavundla SE, Oliphant CJ, Knoesen D (2009) J Mater Sci 44:3192. doi:10.1007/s10853-009-3425-8

    Article  CAS  Google Scholar 

  43. Gong SC, Jang SK, Ryu SO, Jeon H, Park H-H, Chang HJ (2010) Curr Appl Phys 10:e192

    Article  Google Scholar 

  44. Kumar A, Li G, Hong Z, Yang Y (2009) Nanotechnology 20:165202

    Article  Google Scholar 

  45. Kwong CY, Djurisic AB, Chui PC, Cheng KW, Chan WK (2004) Chem Phys Lett 384:372

    Article  CAS  Google Scholar 

  46. Motaung DE, Malgas GF, Arendse CJ (2010) Synth Met 160:876

    Article  CAS  Google Scholar 

  47. Vatansever F, Akbulut U, Toppare L, Hacaloglu J (1996) Polymer 37:1103

    Article  CAS  Google Scholar 

  48. Reddy PK, Goutam PJ, Singh DK, Ghoshal AK, Iyer PK (2009) Polym Degrad Stab 94:1839

    Article  CAS  Google Scholar 

  49. Rivaton A, Gardette JL (1999) Polym Degrad Stab 66:385

    Article  CAS  Google Scholar 

  50. Barnes I, Hjorth J, Mihalopoulos N (2006) Chem Rev 106:940

    Article  CAS  Google Scholar 

  51. Qiao F, Liu A, Hu Z, Liu Y, Yu S, Zhou Z (2009) J Mater Sci 44:3462. doi:10.1007/s10853-009-3461-4

    Article  CAS  Google Scholar 

  52. Reyes-Reyes M, Kim K, Carroll DJ (2005) Appl Phys Lett 87:083506

    Article  Google Scholar 

  53. Shilkler R, Chiesa M, Friend RH (2006) Marcomolecules 39:5393

    Article  Google Scholar 

  54. Motaung DE, Malgas GF, Arendse CJ (2010) J Mater Sci 45:3276. doi:10.1007/s10853-010-4339-1

    Article  CAS  Google Scholar 

Download references

Aknowledgements

The authors would like to thank the financial support of the Department of Science and Technology (DST), Council for Scientific and Industrial Research (CSIR) (Project No.: HGERA7S) and National Research Foundation (NRF) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald F. Malgas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motaung, D.E., Malgas, G.F. & Arendse, C.J. Insights into the stability and thermal degradation of P3HT:C60 blended films for solar cell applications. J Mater Sci 46, 4942–4952 (2011). https://doi.org/10.1007/s10853-011-5408-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5408-9

Keywords

Navigation