Skip to main content
Log in

Temperature-dependence on the optical properties and the phase separation of polymer–fullerene thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A detailed study on the thermal transition of poly(3-hexylthiophene) (P3HT) and blends was investigated by differential scanning calorimetry, while the morphological, phase separation and the transformation in the optical properties were probed by thermal-atomic force microscopy (AFM), polarized optical microscopy (POM) and spectroscopic ellipsometry (SE). The inclusion of fullerenes on the polymer structure confirms the formation and evolution of a new endothermic transition at high temperatures. SE revealed that the refractive index and extinction coefficient of the films increased with annealing temperature up to 140 °C due to the suppressed diffusion of PCBM molecules into the blend. Annealing above 140 °C resulted in a decrease in the optical constants due to the formation of large “needle-like” crystals. This is due to the depletion of PCBM clusters near the “needle-like” structures; resulting from the diffusion of the PCBM molecules into the growing PCBM crystals or “needle-like” crystals as is evidenced by in situ thermal-AFM and POM. These findings indicate that annealing temperature of 140 °C is suitable for a P3HT:PCBM film to obtain the desired phase separation for solar cell application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brabec CJ (2004) Sol Energy Mater Sol Cells 83:273

    Article  CAS  Google Scholar 

  2. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Adv Funct Mater 11:15

    Article  CAS  Google Scholar 

  3. Brabec CJ, Cravino A, Meissner D, Sariciftci NS (2001) Adv Funct Mater 11:374

    Article  CAS  Google Scholar 

  4. Shaheen S, Brabec CJ, Padinger F, Fromherz T, Hummelen JC, Sariciftci NS (2001) Appl Phys Lett 78:8414

    Article  Google Scholar 

  5. Lee W, Shin S, Han S-H, Cho BW (2008) Appl Phys Lett 92:193307

    Article  Google Scholar 

  6. Malgas GF, Arendse CJ, Mavundla SE, Cummings FR (2008) J Mater Sci 43:5599. doi:10.1007/s10853-008-2797-5

    Article  CAS  Google Scholar 

  7. Lee W, Lee J, Lee S-H, Chang J, Yi W, Han S-H (2007) J Phys Chem C 111:9110

    Article  CAS  Google Scholar 

  8. Lee W, Min S-K, Shin S, Han S-H, Lee S-H (2008) Appl Phys Lett 92:023507

    Article  Google Scholar 

  9. Li G, Shrotriya V, Huang J, Yao Y, Moriarity T, Emery K, Yang Y (2005) Nat Mater 4:864

    Article  CAS  Google Scholar 

  10. Brabec CJ, Padinger F, Hummelen JCR, Janssen AJ, Sariciftc NS (1999) Synth Met 102:861

    Article  CAS  Google Scholar 

  11. Soci C, Hwang IW, Moses D, Zhu Z, Waller D, Gaudiana R, Brabec CJ, Heeger AJ (2007) Adv Funct Mater 13:632

    Article  Google Scholar 

  12. Ishii H, Sugiyama K, Ito E, Seki K (1999) Adv Mater 11:605

    Article  CAS  Google Scholar 

  13. Hoppe H, Sariciftci NS (2006) J Mater Chem 16:45

    Article  CAS  Google Scholar 

  14. Motaung DE, Malgas GF, Arendse CJ (2010) Synth Met 160:876

    Article  CAS  Google Scholar 

  15. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Adv Funct Mater 151:617

    Google Scholar 

  16. Padinger F, Rittberger RS, Sariciftci NS (2003) Adv Funct Mater 13:85

    Article  CAS  Google Scholar 

  17. Motaung DE, Malgas GF, Arendse CJ, Mavundla SE, Oliphant CJ, Knoesen D (2009) J Mater Sci 44:3192. doi:10.1007/s10853-009-3425-8

    Article  CAS  Google Scholar 

  18. Kim Y, Choulis SA, Nelson J, Bradley DDC, Cook S, Durrant JR (2005) J Mater Sci 40:1371. doi:10.1007/s10853-005-0568-0

    Article  CAS  Google Scholar 

  19. Qiao F, Liu A, Hu Z, Liu Y, Yu S, Zhou Z (2009) J Mater Sci 44:3462. doi:10.1007/s10853-009-3461-4

    Article  CAS  Google Scholar 

  20. Li G, Shrotriya V, Huang JS, Yao Y, Moriarty T, Emery K, Yang Y (2005) Nat Mater 4:864

    Article  CAS  Google Scholar 

  21. Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) Adv Funct Mater 17:1636

    Article  Google Scholar 

  22. Motaung DE, Malgas GF, Arendse CJ, Malwela T (2010) Mater Chem Phys 124:208

    Article  CAS  Google Scholar 

  23. Lee JK, Wan L, Ma CJ, Brabec CJ, Yuen JS, Moon JY, Kim K, Lee GC, Bazan AJ, Heeger A (2008) J Am Chem Soc 130:3619

    Article  CAS  Google Scholar 

  24. Chen L-M, Hong Z, Li G, Yang Y (2009) Adv Mater 21:1434

    Article  CAS  Google Scholar 

  25. Mihailetchi VD, Xie H, de Boer B, Koster LJA, Blom PWM (2006) Adv Funct Mater 16:699

    Article  CAS  Google Scholar 

  26. Cho S, Lee K, Yuen J, Wang G, Moses D, Heeger AJ, Surin M, Lazzaroni R (2006) J Appl Phys 100:114503

    Article  Google Scholar 

  27. Motaung DE, Malgas GF, Arendse CJ (2011) J Mater Sci 46:4942. doi:10.1007/s10853-011-5408-9

    Article  CAS  Google Scholar 

  28. Zhokhavets U, Erb T, Gobsch G, Al-Ibrahim M, Ambacher O (2006) Chem Phys Lett 418:347

    Article  CAS  Google Scholar 

  29. Wunderlich B, Dole M (1957) J Polym Sci 24:201

    Article  CAS  Google Scholar 

  30. Malik S, Nandi AK (2002) J Polym Sci Part B Polym Phys 40:2073

    Article  CAS  Google Scholar 

  31. Woollam JA (2008) Inc. Complete EaseTM Data Analysis Manual, June 15

  32. Jellison GE (1993) Thin Solid Films 234:416

    Article  CAS  Google Scholar 

  33. Motaung DE, Malgas GF, Arendse CJ, Mavundla SE, Oliphant CJ, Knoesen D (2009) Sol Energy Mater Sol Cells 93:1674

    Article  CAS  Google Scholar 

  34. Sperling LH (2001) Introduction to polymer science, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  35. Wang X, Ederth T, Inganäs O (2006) Langmuir 22:9287

    Article  CAS  Google Scholar 

  36. Björström CM, Nilsson S, Bernasik A, Budkowski A, Andersson M, Magnusson KO, Moons E (2007) Appl Surf Sci 253:3906

    Article  Google Scholar 

  37. Klimov E, Li W, Yang X, Hoffmann GG, Loos J (2006) Macromolecules 39:4493

    Article  CAS  Google Scholar 

  38. Lioudakis E, Othonos A, Alexandrou I, Hayashi Y (2007) J Appl Phys 102:083104

    Article  Google Scholar 

  39. Lioudakis E, Othonos A, Alexandrou I, Hayashi Y (2007) Appl Phys Lett 91:111117

    Article  Google Scholar 

  40. Motaung DE, Malgas GF, Arendse CJ (2010) J Mater Sci 45:3276. doi:10.1007/s10853-010-4339-1

    Article  CAS  Google Scholar 

  41. Harris DC, Bertolucci MD (1978) Symmetry and spectroscopy. Oxford University Press, New York

    Google Scholar 

  42. Campoy-Quiles M, Ferenczi T, Agostinelli T, Etchegoin PG, Kim Y, Anthopoulos TD, Stavrinou PN, Bradley DDC, Nelson J (2008) Nat Mater 7:158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the Council for Scientific and Industrial Research and the Department of Science and Technology of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerald F. Malgas or David E. Motaung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malgas, G.F., Motaung, D.E. & Arendse, C.J. Temperature-dependence on the optical properties and the phase separation of polymer–fullerene thin films. J Mater Sci 47, 4282–4289 (2012). https://doi.org/10.1007/s10853-012-6278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6278-5

Keywords

Navigation