Skip to main content
Log in

Viscoelastic properties of hollow glass particle filled vinyl ester matrix syntactic foams: effect of temperature and loading frequency

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Viscoelastic properties of hollow particle-reinforced composites called syntactic foams are studied using a dynamic mechanical analyzer. Glass hollow particles of three different wall thicknesses are incorporated in the volume fraction range of 0.3–0.6 in vinyl ester resin matrix to fabricate twelve compositions of syntactic foams. Storage modulus, loss modulus, and glass transition temperature are measured and related to the microstructural parameters of syntactic foams. In the first step, a temperature sweep from −75 to 195 °C is applied at a fixed loading frequency of 1 Hz to obtain temperature dependent properties of syntactic foams. In the next step, selected four compositions of syntactic foams are studied for combined effect of temperature and loading frequency. A frequency sweep is applied in the range 1–100 Hz and the temperature is varied in the range 30–140 °C. Time–temperature superposition (TTS) principle is used to generate master curves for storage modulus over a wide frequency range. The room temperature loss modulus and maximum damping parameter, Tanδ, are found to have a linear relationship with the syntactic foam density. Increasing volume fraction of particles helps in improving the retention of storage modulus at high temperature in syntactic foams. Cole–Cole plot and William–Landel–Ferry equation are used to interpret the trends obtained from TTS. The correlations developed between the viscoelastic properties and material parameters help in tailoring the properties of syntactic foams as per requirements of an application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Shutov F (1986) Advances in polymer science: chromatography/foams/copolymers. Springer, New York

    Google Scholar 

  2. John B, Nair CPR (2010) Update on syntactic foams. iSmithers Rapra, Shropshire

  3. Gupta N, Woldesenbet E (2004) J Cell Plast 40:461. doi:10.1177/0021955x04048421

    Article  CAS  Google Scholar 

  4. Shabde V, Hoo K, Gladysz G (2006) J Mater Sci 41:4061. doi:10.1007/s10853-006-7637-x

    Article  CAS  Google Scholar 

  5. Gladysz G, Perry B, McEachen G, Lula J (2006) J Mater Sci 41:4085. doi:10.1007/s10853-006-7646-9

    Article  CAS  Google Scholar 

  6. Gupta N, Woldesenbet E, Mensah P (2004) Compos A Appl Sci Manuf 35:103. doi:10.1016/j.compositesa.2003.08.001

    Article  Google Scholar 

  7. Gupta N, Kishore K, Woldesenbet E, Sankaran S (2001) J Mater Sci 36:4485. doi:10.1023/a:1017986820603

    Article  CAS  Google Scholar 

  8. Poveda R, Achar S, Gupta N (2012) JOM J Miner Met Mater Soc 64:1148. doi:10.1007/s11837-012-0402-5

    Article  CAS  Google Scholar 

  9. Dimchev M, Caeti R, Gupta N (2010) Mater Des 31:1332. doi:10.1016/j.matdes.2009.09.007

    Article  CAS  Google Scholar 

  10. Hodge AJ, Kaul RK, McMahon WM (2000) In: Loud S, Karbhari V, Adams DO, Strong AB (eds) Proceedings of the 45th international SAMPE symposium. SAMPE Publishing, Long Beach

  11. Grosjean F, Bouchonneau N, Choqueuse D, Sauvant-Moynot V (2009) J Mater Sci 44:1462. doi:10.1007/s10853-008-3166-0

    Article  CAS  Google Scholar 

  12. Bouchonneau N, Sauvant-Moynot V, Choqueuse D, Grosjean F, Poncet E, Perreux D (2010) J Petrol Sci Eng 73:1. doi:10.1016/j.petrol.2010.03.023

    Article  CAS  Google Scholar 

  13. Shunmugasamy V, Pinisetty D, Gupta N (2012) J Mater Sci 47:5596. doi:10.1007/s10853-012-6452-9

    Article  CAS  Google Scholar 

  14. Porfiri M, Nguyen N, Gupta N (2009) J Mater Sci 44:1540. doi:10.1007/s10853-008-3040-0

    Article  CAS  Google Scholar 

  15. Lin T, Gupta N, Talalayev A (2009) J Mater Sci 44:1520. doi:10.1007/s10853-008-3074-3

    Article  CAS  Google Scholar 

  16. McGrath LM, Parnas RS, King SH, Schroeder JL, Fischer DA, Lenhart JL (2008) Polymer 49:999. doi:10.1016/j.polymer.2007.12.014

    Article  CAS  Google Scholar 

  17. Yasmin A, Daniel IM (2004) Polymer 45:8211. doi:10.1016/j.polymer.2004.09.054

    Article  CAS  Google Scholar 

  18. Ferry JD (1980) In: Viscoelastic properties of polymers. Wiley, New York

  19. Menard KP (1999) Dynamic mechanical analysis a practical introduction. CRC Press, Boca Raton

    Book  Google Scholar 

  20. Gupta N, Nagorny R (2006) J Appl Polym Sci 102(2): 1254. doi:10.1002/app.23548

  21. Gupta N, Ye R, Porfiri M (2010) Compos B Eng 41:236. doi:10.1016/j.compositesb.2009.07.004

    Article  Google Scholar 

  22. Rizzi E, Papa E, Corigliano A (2000) Int J Solids Struct 37:5773. doi:10.1016/s0020-7683(99)00264-4

    Article  Google Scholar 

  23. Bardella L, Genna F (2001) Int J Solids Struct 38:7235. doi:10.1016/s0020-7683(00)00228-6

    Article  Google Scholar 

  24. Capela C, Ferreira JAM, Costa JD (2010) Mater Sci Forum 636–637:280. doi:10.4028/www.scientific.net/MSF.636-637.280

    Article  Google Scholar 

  25. Sankaran S, Sekhar K, Raju G, Kumar M (2006) J Mater Sci 41:4041. doi:10.1007/s10853-006-7607-3

    Article  CAS  Google Scholar 

  26. Hu G, Yu D (2011) Mater Sci Eng, A 528:5177. doi:10.1016/j.msea.2011.03.071

    Article  CAS  Google Scholar 

  27. Ferreira JAM, Capela C, Costa JD (2011) Strain 47:275. doi:10.1111/j.1475-1305.2009.00681.x

    Article  CAS  Google Scholar 

  28. John B, Nair CPR, Ninan KN (2010) Mater Sci Eng, A 527:5435. doi:10.1016/j.msea.2010.05.016

    Article  Google Scholar 

  29. Lefebvre X, Sauvant-Moynot V, Choqueuse D, Chauchot P (2009) Oil Gas Sci Technol: Rev d’IFP Energies Nouvelles 64:165. doi:10.2516/ogst/2008053

    Article  CAS  Google Scholar 

  30. Tagliavia G, Porfiri M, Gupta N (2009) J Compos Mater 43:561. doi:10.1177/0021998308097683

    Article  CAS  Google Scholar 

  31. Asif A, Rao VL, Ninan KN (2010) Mater Sci Eng, A 527:6184. doi:10.1016/j.msea.2010.06.058

    Article  Google Scholar 

  32. Wouterson EM, Boey FYC, Hu X, Wong S-C (2007) Polymer 48:3183. doi:10.1016/j.polymer.2007.03.069

    Article  CAS  Google Scholar 

  33. Guo Z, Pereira T, Choi O, Wang Y, Hahn HT (2006) J Mater Chem 16:2800. doi:10.1039/B603020C

    Article  CAS  Google Scholar 

  34. Guo Z, Wei S, Shedd B, Scaffaro R, Pereira T, Hahn HT (2007) J Mater Chem 17:806. doi:10.1039/B613286C

    Article  CAS  Google Scholar 

  35. Guo Z, Ng HW, Yee GL, Hahn HT (2009) J Nanosci Nanotechnol 9:3278. doi:10.1166/jnn.2009.VC06

    Article  CAS  Google Scholar 

  36. Ray D, Sarkar BK, Das S, Rana AK (2002) Compos Sci Technol 62:911. doi:10.1016/s0266-3538(02)00005-2

    Article  CAS  Google Scholar 

  37. Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) J Mater Chem 20:4937. doi:10.1039/C0JM00063A

    Article  CAS  Google Scholar 

  38. Corning Dow (2004) FSRs in extreme applications: proof of the new paradigm. A Dow Corning Publication, Midland

    Google Scholar 

  39. Zwynenburg J (2010) Articles on plastics testing characterizing foam hinged lid containers utilizing dynamic mechanical analysis (DMA). http://www.ides.com/articles/testing/2010/characterizing-foam-hinged-lid-containers.asp. Accessed 24 Sept 2012

  40. Huang JS, Gibson LJ (1993) J Mech Phys Solids 41:55. doi:10.1016/0022-5096(93)90063-l

    Article  Google Scholar 

  41. Tagliavia G, Porfiri M, Gupta N (2010) Compos B Eng 41:86. doi:10.1016/j.compositesb.2009.03.004

    Article  Google Scholar 

  42. Karthikeyan CS, Sankaran S, Kishore (2005) Macromol Mater Eng 290: 60. doi:10.1002/mame.200400177

  43. Nji J, Li G (2008) Compos A Appl Sci Manuf 39:1404. doi:10.1016/j.compositesa.2008.05.001

    Article  Google Scholar 

  44. Brennan AB, Wang YQ, DeSimone JM, Stompel S, Samulski ET (1993) Polymer 34:807. doi:10.1016/0032-3861(93)90366-i

    Article  CAS  Google Scholar 

  45. Xia Z, Sue H-J, Hsieh AJ, Huang JWL (2001) J Polym Sci B 39:1394. doi:10.1002/polb.1111

    Article  CAS  Google Scholar 

  46. Mahieux CA, Reifsnider KL (2001) Polymer 42:3281. doi:10.1016/s0032-3861(00)00614-5

    Article  CAS  Google Scholar 

  47. Mahieux CA, Reifsnider KL (2002) J Mater Sci 37:911. doi:10.1023/a:1014383427444

    Article  CAS  Google Scholar 

  48. Mahieux CA, Reifsnider KL (2002) J Elastomers Plast 34:79. doi:10.1106/009524402022348

    Article  CAS  Google Scholar 

  49. Tagliavia G, Porfiri M, Gupta N (2010) Int J Solids Struct 47:2164. doi:10.1016/j.ijsolstr.2010.04.025

    Article  Google Scholar 

  50. Tagliavia G, Porfiri M, Gupta N (2011) Int J Solids Struct 48:1141. doi:10.1016/j.ijsolstr.2010.12.017

    Article  CAS  Google Scholar 

  51. Robertson CG, Lin CJ, Rackaitis M, Roland CM (2008) Macromolecules 41:2727. doi:10.1021/ma7022364

    Article  CAS  Google Scholar 

  52. Pothan LA, Oommen Z, Thomas S (2003) Compos Sci Technol 63:283. doi:10.1016/s0266-3538(02)00254-3

    Article  CAS  Google Scholar 

  53. Williams ML, Landel RF, Ferry JD (1955) J Am Chem Soc 77:3701. doi:10.1021/ja01619a008

    Article  CAS  Google Scholar 

  54. Bozorg-Haddad A, Iskander M (2011) J Mater Eng Perform 20:1219. doi:10.1007/s11665-010-9743-9

    Article  CAS  Google Scholar 

  55. Bozorg-Haddad A, Iskander M (2011) J Mater Civ Eng 23:1154. doi:10.1061/(ASCE)MT.1943-5533.0000278

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Office of Naval Research grant N00014-10-1-0988 with Dr. Yapa D.S. Rajapakse as the program manager. The authors thank the MAE Department for providing facilities and support. TA Instruments is acknowledged for technical discussions. Dr. Dung D. Luong is thanked for help in conducting some experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Pinisetty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shunmugasamy, V.C., Pinisetty, D. & Gupta, N. Viscoelastic properties of hollow glass particle filled vinyl ester matrix syntactic foams: effect of temperature and loading frequency. J Mater Sci 48, 1685–1701 (2013). https://doi.org/10.1007/s10853-012-6927-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6927-8

Keywords

Navigation