Skip to main content
Log in

Transverse compression behavior of textile rovings: finite element simulation and experimental study

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Results from finite element simulation of the transverse compression of Polyamide 6.6 rovings made of 40 filaments are compared in this paper against experimental data. The finite element simulation, using a finite strain beam model to represent each filament of the roving, focuses on the modeling of contact–friction interactions between filaments. Experimental tests, consisting in crushing rovings between two rigid planes, varying the twist and the tensile force, are reproduced by simulation. Experimental and simulation results are compared with a good agreement. The simulation studies the influence of the roving twist, the applied tensile force, and the friction coefficient on the transverse compression behavior. The occurrence of plateaus in the transverse compression curve is highlighted and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Barbier C, Dendievel R, Rodney D (2009) Comput Mater Sci 45(3):593

    Article  CAS  Google Scholar 

  2. Beil NB, Roberts WW Jr (2002) Text Res J 72(4):341

    Article  CAS  Google Scholar 

  3. Beil NB, Roberts WW Jr (2002) Textile Res J 72(5):375

    Article  CAS  Google Scholar 

  4. Boisse P, Aimène Y, Dogui A, Dridi S, Gatouillat S, Hamila N, Aurangzeb Khan M, Mabrouki T, Morestin F, Vidal-Sallé E (2010) Int J Mater Form 3:1229

    Article  Google Scholar 

  5. Cai Z, Gutowski T (1992) J Compos Mater 26(8):1207

    Article  Google Scholar 

  6. Carnaby GA, Pan N (1989) Text Res J 59(5):275

    Article  CAS  Google Scholar 

  7. Chen B, Cheng AD, Chou TW (2001) Compos A 32(5):701

    Article  Google Scholar 

  8. Dunlop JI (1983) J Text Inst 74(2):92

    Article  Google Scholar 

  9. Durville D (2005) J Mater Sci 40:5941. doi:10.1007/s10853-005-5061-2

    Article  CAS  Google Scholar 

  10. Durville D (2009) In: Ganghoffer JF, Pastrone F (eds) Mechanics of microstructured solids. Lecture notes in applied and computational mechanics, vol 46. Springer, Berlin, p 39. doi: 10.1007/978-3-642-00911-2_5

    Google Scholar 

  11. Durville D (2010) Int J Mater Form 3:1241. doi:10.1007/s12289-009-0674-7

    Article  Google Scholar 

  12. Durville D (2011) In: Boisse P (ed) Microscopic approaches for understanding the mechanical behaviour of reinforcements in composites. Woodhead Publishing Limited, Cambridge, p 461

    Google Scholar 

  13. Durville D (2011) In: Zavarise G, Wriggers P (eds) Trends in computational contact mechanics, Lecture notes in applied and computational mechanics, vol 58. Springer, Berlin, p 1. doi:10.1007/978-3-642-22167-5_1

    Google Scholar 

  14. Durville D (2012) Comput Mech 49(6):687. doi:10.1007/s00466-012-0683-0

    Article  Google Scholar 

  15. Gutowski T, Cai Z, Bauer S, Boucher D, Kingery J, Wineman S (1987) J Compos Mater 21(7):650

    Article  CAS  Google Scholar 

  16. Gutowski T, Dillon G (1992) J Compos Mater 26(16):2330

    Article  CAS  Google Scholar 

  17. Gutowski TG, Kingery J, Boucher D (1986) In: Proc. ANTEC 1986, p 1316. American Society for Composites, Seattle, WA,

  18. Jeguirim SEG, Fontaine S, Wagner-Kocher C, Moustaghfir N, Durville D (2012) Text Res J 82(1):77. doi:10.1177/0040517511418563

    Article  CAS  Google Scholar 

  19. Kawabata S (1990) J Text Inst 81(4):432

    Article  CAS  Google Scholar 

  20. Komori T, Makishima K (1977) Text Res J 47:13

    Google Scholar 

  21. Kotani T, Sweeney J, Ward IM (1994) J Mater Sci 29:5551. doi:10.1007/BF00349946

    Article  CAS  Google Scholar 

  22. Lee DH, Lee JK (1985) In: Kawabata S, Postle R, Niwa M (eds) Objective measurement: applications to product design and process control. The Textile machinery Society of Japan, Osaka, p 613

    Google Scholar 

  23. Lee DH, Lee JK (1988) In: Carnaby GA, Wood EJ, Story LF (eds) The application of mathematics and physics in the wool industry. Lincoln, Canterbury, p 171

    Google Scholar 

  24. Lomov SV, Verpoest I (2000) J Reinf Plast Compos 19(16):1329

    Article  CAS  Google Scholar 

  25. Miao Y, Zhou E, Wang Y, Cheeseman BA (2008) Compos Sci Technol 68(7–8):1671

    Article  Google Scholar 

  26. Pickett A, Sirtautas J, Erber A (2009) Appl Compos Mater 16:345

    Article  Google Scholar 

  27. Robitaille F, Gauvin R (1998) Polym Compos 19:198216

    Google Scholar 

  28. Singletary J, Davis H, Ramasubramanian MK, Knoff W, Toney M (2000) J Mater Sci 35:573. doi:10.1023/A:1004764024568

    Article  CAS  Google Scholar 

  29. Singletary J, Davis H, Song Y, Ramasubramanian MK, Knoff W (2000) J Mater Sci 35:583. doi:10.1023/A:1004716108638

    Article  CAS  Google Scholar 

  30. Stamoulis G, Wagner-Kocher C, Renner M (2005) Exp Tech 29:26

    Article  Google Scholar 

  31. Stamoulis G, Wagner-Kocher C, Renner M (2007) J Mater Sci 42:4441. doi:10.1007/s10853-006-0655-x

    Article  CAS  Google Scholar 

  32. Wang Y, Sun X (2001) Compos Sci Technol 61(2):311

    Article  Google Scholar 

  33. van Wyk CM (1946) J Text Inst 37:285

    Article  Google Scholar 

Download references

Acknowledgements

The support provided by the French National Agency of Research (ANR) project MECAFIBRES is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Durville.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moustaghfir, N., El-Ghezal Jeguirim, S., Durville, D. et al. Transverse compression behavior of textile rovings: finite element simulation and experimental study. J Mater Sci 48, 462–472 (2013). https://doi.org/10.1007/s10853-012-6760-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6760-0

Keywords

Navigation