Skip to main content
Log in

Regression analysis of temperature-dependent mechanical and thermal properties of dielectric technical ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Regression analysis is performed on a data set of temperature-dependent material properties of several ceramic materials. The materials considered are alumina, aluminium nitride, beryllia, fused quartz, sialon, and silicon nitride. The properties considered are density, Young’s, bulk, and shear moduli, Poisson’s ratio, tensile, flexural and compressive strength, thermal conductivity, specific heat capacity, and thermal expansion coefficient. The data set, previously reported by de Faoite et al. (J Mater Sci 47(10):4211, 2012), was compiled to facilitate the materials selection and design of a ceramic component for the Variable Specific-Impulse Magnetoplasma Rocket (VASIMR®). Temperature-dependent material property data are required for accurate thermo-structural modelling of such ceramic components which operate over a wide temperature range. The goal of this paper is to calculate a set of regression coefficients to reduce this data set to a tractable format for use in the materials selection and design of such components. Regression analysis could not be performed for all material properties for all of these materials, due to a lack of data in the literature, and these gaps in the available data are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. de Faoite D, Browne DJ, Chang-Díaz FR, Stanton KT (2012) J Mater Sci 47(10):4211. doi:10.1007/s10853-011-6140-1

    Article  Google Scholar 

  2. Chang-Díaz FR, Squire JP, Ilin AV, McCaskill GE, Nguyen, TX, Winter DS, Petro AJ, Goebel GW, Cassady LD, Stokke KA, Dexter CE, Graves TP, Amador Jr. L, George A, Carter MD, Baity Jr. FW, Barber GC, Goulding RH, Sparks DO, Schwenterly SW, Bengston RD, Breizman BN, Jacobson VT, Arefiev AV, Sagdeev RZ, Karavasilis K, Novakovski SV, Chan AA, Glover TW (1999) In: International conference on electromagnetics in advanced applications, Torino

  3. Chang-Diaz FR (2000) Sci Am 283(5):90

    Article  Google Scholar 

  4. Chang-Díaz FR, Squire JP, Bengston RD, Breizman BN, Baity FW, Carter MD (2000) In: 36th AIAA/ASME/SAE/ASEE joint propulsion conference, Huntsville, Alabama, 17–19 July 2000

  5. Mulcahy JM, Browne DJ, Stanton KT, Chang Diaz FR, Cassady LD, Berisford DF, Bengston RD (2009) Int J Heat Mass Trans 52(9–10):2343

    Article  CAS  Google Scholar 

  6. Heikkinen JA, Orivuori S, Linden J, Saarelma S, Heikinheimo L (1999) IEEE Trans Dielectr Electr Insul 6(2):169

    Article  CAS  Google Scholar 

  7. Hamlyn-Harris C, Borthwick A, Fanthome J, Waldon C, Nightingale M, Richardson N (1999) Fusion Eng Des 84:887

    Article  Google Scholar 

  8. Huang X, Garner J, Conroy P (2005) In: Technical report ARL-MR-624, Army Research Laboratory, Aberdeen

  9. Cazajus V, Lorrain B, Welemane H, Parantheon Y, Karama M (2008) Proc IMechE Part L: J Mater: Des Appl 222:291

    Google Scholar 

  10. Munro R (1997) J Am Ceram Soc 80(8):1919

    Article  CAS  Google Scholar 

  11. Beaver WW, Theodore JG, Bielawski CA (1964) J Nucl Mater 14:326

    Article  CAS  Google Scholar 

  12. Carniglia SC, Johnson RE, Hott AC, Bentle GG (1964) J Nucl Mater 14:378

    Article  CAS  Google Scholar 

  13. Fryxell RE, Chandler BA (1964) J Am Ceram Soc 47(6):283

    Article  CAS  Google Scholar 

  14. Gerald CF, Wheatley PO (2004) In: Applied numerical analysis, 7th edn. Pearson Education Inc., Boston

    Google Scholar 

  15. Sugawara A (1969) Physica 41(3):515

    Article  CAS  Google Scholar 

  16. Sergeev OA, Shashkov AG, Umanskii AS (1982) J Eng Phys Thermophys 43:1375

    Google Scholar 

  17. Slack GA, Bartram SF (1975) J Appl Phys 46(1):89

    Article  CAS  Google Scholar 

  18. Swab JJ, Wereszczak AA, Tice J, Caspe R, Kraft RH, Adams JW (2005) Technical Report ARL-TR-3417, Army Research Laboratory, Aberdeen

  19. Wachtman J, Tefft W, Lam D, Apstein C (1961) Phys Rev 122(6):1754

    Article  CAS  Google Scholar 

  20. Bruls RJ, Hintzen HT, de With G, Metselaar R (2001) J Eur Ceram Soc 21(3):263

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth T. Stanton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Faoite, D., Browne, D.J. & Stanton, K.T. Regression analysis of temperature-dependent mechanical and thermal properties of dielectric technical ceramics. J Mater Sci 48, 451–461 (2013). https://doi.org/10.1007/s10853-012-6759-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6759-6

Keywords

Navigation