Skip to main content
Log in

Preparation and properties of multi-walled carbon nanotube/poly(organophosphazene) composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) are promising materials because of their unique properties. However, the poor solubility in solvents limits the function of CNTs and hinders their applications in many fields. Surface modification of CNTs with polymers is an efficient method to solve this problem. Several polymers were tested for the preparation of CNT dispersions. In comparison with organic polymers, poly(organophosphazenes) are highly stable macromolecules with adjustable properties which depend on the side groups. This article is to describe the synthesis of thermally stable and soluble multi-walled CNT/poly(organophosphazene) composites. The poly(organophosphazene)s substituted with (a) 100 % quaternary protonated pyridinoxy (PPY), (b) 50 % quaternary protonated pyridinoxy and 50 % a long aliphatic chain alcohol (1-dodecanol) (PDK), and (c) 50 % quaternary protonated pyridinoxy and 50 % a glycol ether [(2-(2-methoxyethoxy)ethanol] (PET) have been synthesized. f-MWCNT/poly(organophosphazene) composites have been prepared by the treatment of the functionalized multi-walled carbon nanotubes (f-MWCNT) with the protonated polyphosphazenes (PPY, PDK, and PET) using different feed ratios [R feed = 1:1, 1:3, 1:5, 1:10 (w:w)]. The thermal stability of prepared composites (f-MWCNT/PPY, f-MWCNT/PDK, and f-MWCNT/PET) have been investigated by TGA. By considering thermal stabilities and solubility of all prepared composites, f-MWCNT/PPY1:5, f-MWCNT/PDK1:5, and f-MWCNT/PET1:5 have been chosen as optimum composite composition and characterized by 31P NMR, 1H NMR, XRD, Raman spectroscopy, and EDX analysis. The morphologic characterizations of the f-MWCNT/PPY1:5, f-MWCNT/PDK1:5, f-MWCNT/PET1:5 nanocomposites have been carried out by HRTEM. Excellent dispersions of the nanocomposites in water and common organic solvents have been achieved. The solubility and thermal stability of nanocomposites depend on the side groups on poly(organophosphazene).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Prog Polym Sci 35:357

    Article  CAS  Google Scholar 

  2. Thess A, Lee R, Nikolaev P, Thess A, Lee R, Nikolaev P, Dai H, Petit P, Robert J, Xu C, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tománek D, Fischer JE, Smalley RE (1996) Science 273:483

    Article  CAS  Google Scholar 

  3. Palacin T, Khanh HL, Jouselme B, Jegou P, Filoramo A, Ehli C, Guldi DM, Campidelli S (2009) J Am Chem Soc 131:15394

    Article  CAS  Google Scholar 

  4. Yuan WZ, Zhao H, Shen XY, Mahtab F, Lam JWY, Sun JZ, Tang BZ (2009) Macromolecules 42:9400

    Article  CAS  Google Scholar 

  5. Wepasnick KA, Smith BA, Bitter JL, Fairbrother DH (2010) Anal Bioanal Chem 396:1003

    Article  CAS  Google Scholar 

  6. Lin Y, Zhou B, Fernando KAS, Liu P, Allard LF, Sun YP (2003) Macromolecules 36:7199

    Article  CAS  Google Scholar 

  7. Sano M, Kamino A, Shinkai S (2001) Angew Chem Int Ed 40:4661

    Article  CAS  Google Scholar 

  8. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Prog Polym Sci 35:837

    Article  CAS  Google Scholar 

  9. Mark JE, Allcock HR, West R (1992) Inorganic polymers. Englewood Cliffs, Prentice Hall

    Google Scholar 

  10. Greish YE, Bender JD, Lakshmi S, Brown PW, Allcock HR, Laurencin CT (2005) Biomaterials 26:1

    Article  CAS  Google Scholar 

  11. Orme CJ, Stewart FF (2005) J Membr Sci 253:243

    Article  CAS  Google Scholar 

  12. Guglielmi M, Brusatin G, Facchin G, Gleria M (1999) Appl Organomet Chem 13:339

    Article  CAS  Google Scholar 

  13. Hacıvelioğlu F, Özden S, Çelik SU, Yeşilot S, Kılıç A, Bozkurt A (2011) J Mater Chem 21:1020

    Article  Google Scholar 

  14. Fu J, Huang X, Huang Y, Zhang J, Tang X (2009) Chem Commun 9:1049

    Article  Google Scholar 

  15. Zhang P, Huang X, Fu J, Huang Y, Tang X (2010) Macromol Mater Eng 295:437

    CAS  Google Scholar 

  16. Park HJ, Heo HY, Lee SC, Park M, Lee SS, Kim J, Chang JY (2006) J Inorg Organomet Polym Mater 16:359

    Article  CAS  Google Scholar 

  17. Okutan E, Aydın GO, Hacıvelioğlu F, Kılıç A, Beyaz SK, Yeşilot S (2011) Polymer 52:1241

    Article  CAS  Google Scholar 

  18. Görür M, Yılmaz F, Kılıç A, Şahin ZM, Demirci A (2011) J Polym Sci Pol Chem 49:3193

    Article  Google Scholar 

  19. Deng M, Kumbar SG, Wan Y, Toti US, Allcock HR, Laurencin CT (2010) Soft Matter 6:3119

    Article  CAS  Google Scholar 

  20. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Science 280:1253

    Article  CAS  Google Scholar 

  21. Zhao W, Song C, Pehrsson PE (2002) J Am Chem Soc 124:12418

    Article  CAS  Google Scholar 

  22. Hiura H, Ebbesen TW, Tanigaki K (1995) Adv Mater 7:275

    Article  CAS  Google Scholar 

  23. Mickelson ET, Chiang IW, Zimmerman JL, Boul PJ, Lozano J, Liu J, Smalley RE, Hauge RH, Margrave JL (1999) J Phys Chem B 103:4318

    Article  CAS  Google Scholar 

  24. Allcock HR, Kugel RL (1965) J Am Chem Soc 87:4216

    Article  CAS  Google Scholar 

  25. Banerjee S, Hemraj-Benny T, Wong SS (2005) Adv Mater 17:17

    Article  CAS  Google Scholar 

  26. Hirsch A (2002) Angew Chem Int Ed 41:1853

    Article  CAS  Google Scholar 

  27. Niyogi S, Hamon MA, Hu H, Zhao B, Bhowmik P, Sen R, Itkis ME, Haddon RC (2002) Acc Chem Res 35:1105

    Article  CAS  Google Scholar 

  28. Blake R, Gun’ko YK, Coleman J, Cadek M, Fonseca A, Nagy JB, Blau WJ (2004) J Am Chem Soc 126:10226

    Article  CAS  Google Scholar 

  29. Liang F, Sadana AK, Peera A, Chattopadhyay J, Gu ZN, Hauge RH, Billups WE (2004) Nano Lett 4:1257

    Article  CAS  Google Scholar 

  30. Holzinger M, Abraha J, Whelan P, Graupner R, Ley L, Hennrich F, Kappes M, Hirsch A (2003) J Am Chem Soc 125:8566

    Article  CAS  Google Scholar 

  31. Hamon MA, Chen J, Hu H, Chen Y, Itkis ME, Rao AM, Eklund PC, Haddon RC (1999) Adv Mater 11:834

    Article  CAS  Google Scholar 

  32. Bahr JL, Mickelson ET, Bronikowski MJ, Smalley RE, Tour JM (2001) Chem Commun 2:193

    Article  Google Scholar 

  33. Marshall MW, Popa-Nita S, Shapter JG (2006) Carbon 44:1137

    Article  CAS  Google Scholar 

  34. Shaffer MSP, Fan X, Windle AH (1998) Carbon 36:1603

    Article  CAS  Google Scholar 

  35. Hamon MA, Hu H, Bhowmik P, Niyogi S, Zhao B, Itkis ME, Haddon RC (2001) Chem Phys Lett 347:8

    Article  CAS  Google Scholar 

  36. Chen J, Hamon MA, Hu H, Chen Y, Rao AM, Eklund PC, Haddon RC (1998) Science 282:95

    Article  CAS  Google Scholar 

  37. Chattopadhyay D, Lastella S, Kim S, Papadimitrakopoulos F (2002) J Am Chem Soc 124:728

    Article  CAS  Google Scholar 

  38. Chattopadhyay D, Galeska I, Papadimitrakopoulos F (2003) J Am Chem Soc 125:3370

    Article  CAS  Google Scholar 

  39. Chen J, Rao AM, Lyuksyutov S, Itkis ME, Hamon MA, Hui Hu H, Cohn RW, Eklund PC, Colbert DT, Smalley RE, Haddon RC (2001) J Phys Chem B 105:2525

    Article  CAS  Google Scholar 

  40. Chen J, Liu H, Weimer WA, Halls MD, Waldeck DH, Walker GC (2002) J Am Chem Soc 124:9034

    Article  CAS  Google Scholar 

  41. Andrianov AK (2009) Polyphosphazenes for biomedical applications. Wiley, Hoboken

    Book  Google Scholar 

  42. Cho Y, Baek H, Sohn YS (1999) Macromolecules 32:2167

    Article  CAS  Google Scholar 

  43. Carriedo GA, Alonso FJG, Garcia JL, Carbajo RJ, Ortiz FL (1999) Eur J Inorg Chem 6:1015

    Article  Google Scholar 

  44. Diaz C, Valenzuela ML (2006) Macromolecules 39:103

    Article  CAS  Google Scholar 

  45. Park C, Lee S, Lee JH, Lim J, Lee SC, Park M, Lee SS, Kim J, Park CR, Kim C (2007) Carbon 45:2072

    Article  CAS  Google Scholar 

  46. Chen L, Xie H, Yu W (2011) In: Marulanda JM (ed) Carbon nanotubes applications on electron devices. Intech, Rijeka, p 214

    Google Scholar 

  47. Kong H, Gao C, Yan DY (2004) Macromolecules 37:4022

    Article  CAS  Google Scholar 

  48. Zhao B, Hu H, Haddon RC (2004) Adv Funct Mater 14:71

    Article  CAS  Google Scholar 

  49. Kong H, Gao C, Yan D (2004) J Am Chem Soc 126:412

    Article  CAS  Google Scholar 

  50. Yao Z, Braidy N, Botton GA, Adronov A (2003) J Am Chem Soc 125:16015

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Gebze Institute of Technology (GIT) for the provided financial support. The authors would like to thank to Prof. Dr. Ali ATA for HRTEM and XRD analysis from Gebze Institute of Technology Department of Material Science and Engineering. In addition, we also acknowledge the use of Raman facilities of Yeditepe University under the supervision of Prof. Dr. Mustafa ÇULHA and Şaban KALAY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Yeşilot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okutan, E., Aydın, G.O., Hacıvelioğlu, F. et al. Preparation and properties of multi-walled carbon nanotube/poly(organophosphazene) composites. J Mater Sci 48, 201–212 (2013). https://doi.org/10.1007/s10853-012-6729-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6729-z

Keywords

Navigation