Skip to main content
Log in

Hybrid S-valine functionalized multi-walled carbon nanotubes/poly(amid-imide) nanocomposites containing trimellitimidobenzene and 4-hydroxyphenyl benzamide moieties: preparation, processing, and thermal properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, amino acid functionalized multi-walled carbon nanotubes (f-MWCNTs)/poly(amide-imide) (PAI) nanocomposites (NCs) were prepared by a solution mixing method. First, 4,4′-methylenebis(3-chloro-2,6-diethyl trimellitimidobenzene) reacted with 3,5-diamino-N-(4-hydroxyphenyl)benzamide in tetra-n-butylammonium bromide as a green medium and a safe methodology (toxic and volatile organic solvents were eliminated) to produce a nanostructured PAI in high yield. MWCNTs were chemically modified with S-valine using microwave irradiation in order to obtain a homogeneous dispersion of MWCNTs in the PAI matrix. The resulting NCs were also characterized by FT-IR, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and thermogravimetric analysis. The TEM and FE-SEM images confirmed good dispersion of f-MWCNTs in the polymer matrix. The results of TGA analysis suggest that a good thermal stability occurs especially with low filler amounts (5 wt%) of f-MWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  2. Shirazi Y, Tofighy MA, Mohammad T, Pak A (2011) Effects of different carbon precursors on synthesis of multiwall carbon nanotubes: purification and functionalization. Appl Surf Sci 257:7359–7367

    Google Scholar 

  3. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube. Compos Sci 265:1212–1214

    Google Scholar 

  4. Sharma A, Tripathi B, Vijay YK (2010) Dramatic improvement in properties of magnetically aligned CNT/polymer nanocomposites. J Membr Sci 361:89–95

    Article  Google Scholar 

  5. Fan J, Zhao D, Wu M, Xu Z, Song J (2006) Preparation and microstructure of multi-wall carbon nanotubes-toughened Al2O3 composite. J Am Ceram Soc 89:750–753

    Article  Google Scholar 

  6. Hou Y, Tang J, Zhang H, Qian C, Feng Y, Liu J (2009) Functionalized few-walled carbon nanotubes for mechanical reinforcement of polymeric composites. ACS Nano 3:1057–1062

    Article  Google Scholar 

  7. Xiong J, Zheng Z, Qin X, Li M, Li H, Wang X (2006) The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon 44:2701–2707

    Article  Google Scholar 

  8. Palmer MJ, Putz KW, Ramanathan T, Brinson LC (2011) Multi-scale reinforcement of CFRPs using carbon nanofibers. Compos Sci Technol 71:79–86

    Article  Google Scholar 

  9. Estili M, Kawasaki A, Sakamoto H, Mekuchi Y, Kuno M, Tsukada T (2008) The homogeneous dispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes in α-alumina ceramics for structural reinforcement. Acta Mater 56:4070–4079

    Article  Google Scholar 

  10. Gavalas VG, Andrews R, Bhattacharyya D, Bachas LG (2001) Carbon nanotube sol–gel composite materials. Nano Lett 1:719–721

    Article  Google Scholar 

  11. Hsieh TH, Kinloch AJ, Taylor AC, Kinloch IA (2011) The effect of carbon nanotubes on the fracture toughness and fatigue performance of a thermosetting epoxy polymer. J Mater Sci 46:7525–7535. doi:10.1007/s10853-011-5724-0

    Article  Google Scholar 

  12. Huang Z, Xi L, Subhani Q, Yan W, Guo W, Zhu Y (2013) Covalent functionalization of multi-walled carbon nanotubes with quaternary ammonium groups and its application in ion chromatography. Carbon 62:127–134

    Article  Google Scholar 

  13. Mallakpour S, Zadehnazari A (2013) Effect of amino acid functionalization on the interfacial adhesion and behavior of multi-walled carbon nanotubes/poly(amide-imide) nanocomposites containing thiazole side unit. J Polym Res 20:1–12

    Google Scholar 

  14. Jin FL, Yop Rhee K, Park SJ (2011) Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization. J Solid State Chem 184:3253–3256

    Article  Google Scholar 

  15. Talaeemashhadi S, Sansotera M, Gambarotti C, Famulari A, Bianchi CL, Antonio Guarda P, Navarrini W (2013) Functionalization of multi-walled carbon nanotubes with perfluoropolyether peroxide to produce superhydrophobic properties. Carbon 59:150–159

    Article  Google Scholar 

  16. Novais RM, Simon F, Paiva MC, Covas JA (2012) The influence of carbon nanotube functionalization route on the efficiency of dispersion in polypropylene by twin-screw extrusion. Compos A 43:2189–2198

    Article  Google Scholar 

  17. Lipińska ME, Rebelo SLH, Pereira MFR, Gomes JANF, Freire C, Figueiredo JL (2012) New insights into the functionalization of multi-walled carbon nanotubes with aniline derivatives. Carbon 50:3280–3294

    Article  Google Scholar 

  18. Thomas PS, Abdullateef AA, Al-Harthi MA et al (2012) Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes. J Mater Sci 47:3344–3349. doi:10.1007/s10853-011-6174-4

    Article  Google Scholar 

  19. Mallakpour S, Zadehnazari A (2014) A convenient strategy to functionalize carbon nanotubes with ascorbic acid and its effect on the physical and thermomechanical properties of poly(amide-imide) composites. J Solid State Chem 211:136–145

    Article  Google Scholar 

  20. Ran M, Sun W, Liu Y, Chu W, Jiang C (2013) Functionalization of multi-walled carbon nanotubes using water-assisted chemical vapor deposition. J Solid State Chem 197:517–522

    Article  Google Scholar 

  21. Abdolmaleki A, Mallakpour S, Borandeh S (2013) Amino acid-functionalized multi-walled carbon nanotubes for improving compatibility with chiral poly(amide-ester-imide) containing l-phenylalanine and l-tyrosine linkages. Appl Surf Sci 287:117–123

    Google Scholar 

  22. Abid S, El Gharbi R, Gandini A (2004) Polyamide-imides bearing furan moieties. 1. Solution polycondensation of aromatic dianhydrydes with 2-furoic acid dihydrazides. Polymer 45:6469–6478

    Article  Google Scholar 

  23. Mallakpour S, Dinari M (2011) Insertion of novel optically active poly(amide-imide) chains containing pyromellitoyl-bis-l-phenylalanine linkages into the nanolayered silicates modified with l-tyrosine through solution intercalation. Polymer 52:2514–2523

    Article  Google Scholar 

  24. Liaw DJ, Liaw BY (2001) Synthesis and characterization of new polyamide-imides containing pendent adamantyl groups. Polymer 42:839–845

    Article  Google Scholar 

  25. Babooram K, Francis B, Bissessur R, Narain R (2008) Synthesis and characterization of novel (amide-imide)-silica composites by the sol–gel process. Compos Sci Technol 68:617–624

    Article  Google Scholar 

  26. Mallakpour S, Shahmohammadi MH (2005) Synthesis of new optically active poly(amide-imide)s derived from N,N′-(pyromellitoyl)-bis-S-valine diacid chloride and aromatic diamines under microwave irradiation and classical heating. Iran Polym J 14:473–483

    Google Scholar 

  27. Mallakpour S, Zeraatpisheh F (2012) Preparation and morphology distinguishing of novel ZnO ultrafine particle filled nanocomposites contain new poly(amide-imide) via ultrasonic process. J Polym Res 19:1–10

    Article  Google Scholar 

  28. Mallakpour S, Iderli M, Sabzalian MR (2013) In vitro studies on biodegradable chiral nanostructure poly(amide-imide)s containing different natural amino acids in green medium. Des Monomers Polym 16:509–514

    Article  Google Scholar 

  29. Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448

    Article  Google Scholar 

  30. Mallakpour S, Dinari M (2010) High performance polymers in ionic liquids: a review on prospects for green polymer chemistry. Part I: polyamides. Iran Polym J 19:983–1004

    Google Scholar 

  31. Chen Y, Zhang Y, Ke F, Zhou J, Wang H, Liang D (2011) Solubility of neutral and charged polymers in ionic liquids studied by laser light scattering. Polymer 52:481–488

    Article  Google Scholar 

  32. Mallakpour S, Rafiee Z (2011) New developments in polymer science and technology using combination of ionic liquids and microwave irradiation. Prog Polym Sci 36:1754–1765

    Article  Google Scholar 

  33. Mallakpour S, Dinari M (2012) Ionic liquids as green solvents: progress and prospects. In: Mohammad A, Inamuddin D (eds) Green solvents II. Springer, Netherlands, pp 1–32

    Google Scholar 

  34. Mallakpour S, Rafiee Z (2012) Green solvents fundamental and industrial applications. In: Mohammad A (ed) Green solvents I. Springer, Netherlands, pp 1–66

    Google Scholar 

  35. In I, Kim SY (2005) Hyperbranched poly(arylene ether amide) via nucleophilic aromatic substitution reaction. Macromol Chem Phys 206:1862–1869

    Article  Google Scholar 

  36. Mallakpour S, Abdolmaleki A, Rostami M (2014) Morphological and thermal properties of poly(amide-imide)/ZnO nanocomposites derived from 4,4-methylenebis(3-chloro-2,6-diethyl trimellitimidobenzene) and 3,5-diamino-N-(4-hydroxyphenyl)benzamide. Polym Plast Technol. Eng. doi:10.1080/03602559.2014.919644

  37. Mallakpour S, Zadehnazari A (2013) Functionalization of multi-wall carbon nanotubes with amino acid and its influence on the properties of thiadiazol bearing poly(amide-thioester-imide) composites. Synth Met 169:1–11

    Article  Google Scholar 

  38. Amiri A, Maghrebi M, Baniadam M, Zeinali Heris S (2011) One-pot, efficient functionalization of multi-walled carbon nanotubes with diamines by microwave method. Appl Surf Sci 257:10261–10266

    Google Scholar 

  39. Mallakpour S, Zadehnazari A (2014) A facile, efficient, and rapid covalent functionalization of multi-walled carbon nanotubes with natural amino acids under microwave irradiation. Prog Org Coat 77:679–684

    Article  Google Scholar 

  40. Luo Y, Zhao Y, Cai J, Duan Y, Du S (2012) Effect of amino-functionalization on the interfacial adhesion of multi-walled carbon nanotubes/epoxy nanocomposites. Mater Des 33:405–412

    Article  Google Scholar 

  41. Zhou Z, Wang S, Lu L, Zhang Y (2008) Functionalization of multi-wall carbon nanotubes with silane and its reinforcement on polypropylene composites. Compos Sci Technol 68:1727–1733

    Article  Google Scholar 

  42. Cui LJ, Wang YB, Xiu WJ, Wang WY, Xu LH, Xu XB, Meng Y, Li LY, Gao J, Chen LT, Geng HZ (2013) Effect of functionalization of multi-walled carbon nanotube on the curing behavior and mechanical property of multi-walled carbon nanotube/epoxy composites. Mater Des 49:279–284

    Article  Google Scholar 

  43. Hernández-Fernández P, Montiel M, Ocón P et al (2010) Functionalization of multi-walled carbon nanotubes and application as supports for electrocatalysts in proton-exchange membrane fuel cell. Appl Catal B 99:343–352

    Article  Google Scholar 

  44. Battigelli A, Ménard-Moyon C, Da Ros T, Prato M, Bianco A (2013) Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev 65:1899–1920

    Article  Google Scholar 

  45. Kim JB, Yi JW, Nam JE (2011) Dielectric polymer matrix composite films of CNT coated with anatase TiO2. Thin Solid Films 519:5050–5055

    Article  Google Scholar 

  46. Al-Osaimi J, Alhosiny N, Badawi A, Abdallah S (2013) The effects of CNTs types on the structural and electrical properties of CNTs/PMMA nanocomposite films. IJET-IJENS 13:77–79

    Google Scholar 

  47. Oh WC, Chen ML (2008) Synthesis and characterization of CNT/TiO2 composites thermally derived from MWCNT and titanium(IV) n-butoxide. Bull Korean Chem Soc 29:159–164

    Article  Google Scholar 

  48. van Krevelen DW, Hoftyzer PJ (1976) Properties of polymers, their estimation and correlation with chemical structure, 2nd edn. Elsevier, New York

    Google Scholar 

Download references

Acknowledgements

We appreciated the financial support from the Research Affairs Division Isfahan University of Technology (IUT), Isfahan. The partial support of Iran Nanotechnology Initiative Council (INIC), National Elite Foundation (NEF), and Center of Excellence in Sensors and Green Chemistry (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shadpour Mallakpour or Amir Abdolmaleki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Abdolmaleki, A. & Rostami, M. Hybrid S-valine functionalized multi-walled carbon nanotubes/poly(amid-imide) nanocomposites containing trimellitimidobenzene and 4-hydroxyphenyl benzamide moieties: preparation, processing, and thermal properties. J Mater Sci 49, 7445–7453 (2014). https://doi.org/10.1007/s10853-014-8449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8449-z

Keywords

Navigation