Skip to main content
Log in

Integral approach for production of thermoplastics microparts by injection moulding

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Over the last decades, microinjection moulding of thermoplastics has gained a pertinent place on the market of electronic equipment and a broad range of the mechanical aids. However, when size of component drops to the micro-level, the assumptions of the conventional injection moulding cease to describe complex rheological and thermo-mechanical behaviour of the polymer in the microcavity. Miniaturization implies a number of challenges which could only overcome by a series of profound modifications of the conventional injection moulding machine and tools. In the scope of this review, a brief discussion of the strategies applied for adaptation of the conventional injection moulding process to microscale will be introduced. Further, a particular attention will be given to the process/tool/polymer interaction and its influence on the quality signatures of micromoulded parts. In addition an overview of the rheological models of the polymer flow at microcavities and the numerical simulation of the microinjection moulding will then be addressed. Quality evaluation of the micromoulded parts require considering both polymer morphology assessment and final mechanical properties. At microscale, the acquisition of the latter is unlikely by means of conventional mechanical testing, therefore, a brief summary of the mechanical testing for micropolymeric parts will be presented. In order to further evaluate the quality signatures of micromoulded parts an overview of the combined thermo-rheological and structural analysis to link processing history and mechanical solicitations of the part to its short- and long-term performance is also presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

AMI:

Autodesk® Mouldflow® Insight

DLC:

Diamond-like carbon

DMA:

Dynamical mechanical analysis

DOE:

Design of experiments

IDDM:

Interpolated domain decomposition method

HTRS:

Hybrid thermo-rheological structural analysis

LIGA:

Lithographie Galvanoformung Abformung

μEDM:

Micro-electric discharge machining

μIM:

Microinjection moulding

μ-level:

Micro-level

OFAT:

One factor at time

SFM:

Scanning force microscopy

SPH:

Smooth particle hydrodynamic

WEDG:

Wire electro discharge grinding

WLF:

Williams–Landel–Ferry

ABS:

Acrylonitrile butadiene styrene

COC:

Cyclic olefin copolymer

HDPE:

High density polyethylene

PBT:

Polybutylene terephthalate

PC:

Polycarbonate

PEEK:

Polyether ether ketone

PMMA:

Poly(methyl methacrylate)

POM:

Polyoxymethylene

PP:

Polypropylene

E r :

Reduced modulus

H :

Hardness

T g :

Glass transition temperature

T m :

Mould temperature

T melt :

Melt temperature

References

  1. Mohren PWM, Menges G (eds) (2001) How to make injection molds. Library of congress cataloging-in-publication data, 3rd edn. Hanser Gardner Publications, Inc., Cincinnati

    Google Scholar 

  2. Giboz J, Copponnex T, Mélé P (2007) J Micromech Microeng 17(6):96. doi:10.1088/0960-1317/17/6/R02

    Article  CAS  Google Scholar 

  3. Piotter V, Bauer W, Hanemann T, Heckele M, Müller C (2008) Microsyst Technol 14(9):1599. doi:10.1007/s00542-008-0572-9

    Article  CAS  Google Scholar 

  4. Whiteside B (2003) Plast Rubber Compos 32(6):231. doi:10.1179/146580103225002650

    Article  CAS  Google Scholar 

  5. Yao D, Kim B (2002) J Micromech Microeng 12(5):604. doi:10.1088/0960-1317/12/5/314

    Article  CAS  Google Scholar 

  6. Chen C, Chen S, Liaw W, Chien R (2008) Eur Polym J 44(6):1891. doi:10.1016/j.eurpolymj.2008.03.007

    Article  CAS  Google Scholar 

  7. Mnekbi C, Vincent M, Agassant J (2010) Int J Mater Form 3:539. doi:10.1007/s12289-010-0826-9

    Article  Google Scholar 

  8. Tofteberg T (2010) Injection molding of microfeatured polymer components. University of Oslo

  9. Sha B, Dimov S, Griffiths C, Packianather M (2007) J Mater Process Technol 183(2–3):284. doi:10.1016/j.jmatprotec.2006.10.019

    Article  CAS  Google Scholar 

  10. Sha B, Dimov S, Griffiths C, Packianather M (2007) Int J Adv Manuf Technol 33(1):147. doi:10.1007/s00170-006-0579-2

    Article  Google Scholar 

  11. Theilade U, Hansen H (2007) Int J Adv Manuf Technol 33(1):157. doi:10.1007/s00170-006-0732-y

    Article  Google Scholar 

  12. Lee B, Kim D, Kwon T (2004) Microsyst Technol 10(6):531. doi:10.1007/s00542-004-0387-2

    Article  CAS  Google Scholar 

  13. Kalima V et al (2007) Opt Mater 30(2):285. doi:10.1016/j.optmat.2006.11.046

    Article  CAS  Google Scholar 

  14. Zhao J, Mayes R, Chen G, Xie H, Chan H (2003) Polym Eng Sci 43(9):1542. doi:10.1002/pen.10130

    Article  CAS  Google Scholar 

  15. Attia U, Alcock J (2009) Microsyst Technol 15(12):1861. doi:10.1007/s00542-009-0923-1

    Article  CAS  Google Scholar 

  16. Zhang H, Ong N, Lam Y (2008) Int J Adv Manuf Technol 37(11):1105. doi:10.1007/s00170-007-1060-6

    Article  Google Scholar 

  17. Liou A, Chen R (2006) Int J Adv Manuf Technol 28(11):1097. doi:10.1007/s00170-004-2455-2

    Article  Google Scholar 

  18. Xie L, Ziegmann G (2009) Microsyst Technol 15(9):1427. doi:10.1007/s00542-009-0904-4

    Article  CAS  Google Scholar 

  19. Xie L, Ziegmann G (2009) J Alloys Compd 509(2):226. doi:10.1016/j.jallcom.2010.09.051

    Article  CAS  Google Scholar 

  20. Xie L, Ziegmann G, Hlavac M, Wittmer R (2009) Microsyst Technol 15(7):1031. doi:10.1007/s00542-009-0877-3

    Article  CAS  Google Scholar 

  21. Attia U, Marson S, Alcock J (2009) Microfluid Nanofluid 7(1):1. doi:10.1007/s10404-009-0421-x

    Article  CAS  Google Scholar 

  22. Bibber D (2004) In: ANTEC 2004 Plastics: Annual Technical Conference, Chicago, USA, May 16–20, 2004, Society of Plastics Engineers, p 3703

  23. Dr. Boy GmbH & Co (2011) BOY XS—Ultra-compact injection moulding machines for micro and single-cavity injection moulding. http://dr-boy.de/de/product/boy-xs/. Accessed 14 Aug 2011

  24. Michaeli W, Spennemann A, Gärtner R (2002) Microsyst Technol 8(1):55. doi:10.1007/s00542-001-0143-9

    Article  Google Scholar 

  25. Chang P, Hwang S, Lee H, Huang D (2007) J Mater Process Technol 184(1–3):163. doi:10.1016/j.jmatprotec.2006.11.018

    Article  CAS  Google Scholar 

  26. TEC D (2011) Formica PLAST® http://www.desma-tec.de/en/machines/micro_injection/pdf/FormicaPlast_1K_E.pdf. Accessed 17 Aug 2011

  27. 50 m-m (2011) Männer/solutions for plastics http://www.maenner-group.com/text/191/en/jump,191/hot-runner/about-maenner/the-maenner-company.html. Accessed 17 Aug 2011

  28. Giboz J, Copponnex T, Mélé P (2009) J Micromech Microeng 19(2):1. doi:10.1088/0960-1317/19/2/025023

    Article  CAS  Google Scholar 

  29. Pouzada A, Ferreira E, Pontes A (2006) Polym Test 25(8):1017. doi:10.1016/j.polymertesting.2006.06.009

    Article  CAS  Google Scholar 

  30. Fu G, Loh N, Tor S, Tay B, Murakoshi Y, Maeda R (2006) Microsyst Technol 12(6):554. doi:10.1007/s00542-005-0071-1

    Article  CAS  Google Scholar 

  31. Griffiths C, Dimov S, Pham D (2006) In: 4M2006 International Conference on multi-material micro manufacture, Grenoble, France, 20–22 Sept 2006

  32. Neto VF, Vaz R, Oliveira MSA, Grácio J (2009) J Mater Process Technol 209(2):1085. doi:10.1016/j.jmatprotec.2008.03.012

    Article  CAS  Google Scholar 

  33. Griffiths C, Dimov S, Brousseau E, Chouquet C, Gavillet J, Bigot S (2008) Paper presented at the 4M2008 International conference on multi-material micro manufacture, Cardiff, UK, 09–11 Sept 2008

  34. Navabpour P, Teer D, Hitt D, Gilbert M (2006) Surf Coat Technol 201(6):3802. doi:10.1016/j.surfcoat.2006.06.042

    Article  CAS  Google Scholar 

  35. Grave A, Eriksson T, Hansen H (2007) In: 4M2007 Borovets Bulgaria

  36. Yu L, Koh C, Lee L, Koelling K, Madou M (2002) Polym Eng Sci 42(5):871. doi:10.1002/pen.10998

    Article  CAS  Google Scholar 

  37. Wu C, Liang W (2005) Polym Eng Sci 45(7):1021. doi:10.1002/pen.20369

    Article  CAS  Google Scholar 

  38. Michaeli W, Rogalla A, Ziegmann C (2000) Macromol Mater Eng 279(1):42. doi:10.1002/1439-2054(20000601)279:1<42:AID-MAME42>3.0.CO;2-P

    Article  Google Scholar 

  39. Rötting O, Röpke W, Becker H, Gärtner C (2002) Microsyst Technol 8(1):32. doi:10.1007/s00542-002-0106-9

    Article  Google Scholar 

  40. Fleischer J, Halvadjiysky G, Haupt S (2008) Microsyst Technol 14(9):1367. doi:10.1007/s00542-007-0529-4

    Article  CAS  Google Scholar 

  41. Hormes J, Gottert J, Lian K, Desta Y, Jian L (2003) Nucl Instrum Methods Phys Res B 199:332. doi:10.1016/S0168-583X(02)01571-9

    Article  CAS  Google Scholar 

  42. Despa M, Kelly K, Collier J (1999) Microsyst Technol 6(2):60. doi:10.1007/s005420050176

    Article  Google Scholar 

  43. Fea Munnik (2003) Microelectron Eng 67–68:96. doi:10.1016/s0167-9317(03)00064-9

    Google Scholar 

  44. Meyer P, Schulz J, Hahn L, Saile V (2008) Microsyst Technol 14(9):1491. doi:10.1007/s00542-007-0503-1

    Article  CAS  Google Scholar 

  45. Hirata Y (2003) Nucl Instrum Methods Phys Res B 208:21. doi:10.1016/s0168-583x(03)00632-3

    Article  CAS  Google Scholar 

  46. Dea Kim (2006) Polym Eng Sci 46(4):416. doi:10.1002/pen.20466

    Article  CAS  Google Scholar 

  47. Watt F (1999) Nucl Instrum Methods Phys Res B 158(1–4):165. doi:10.1016/s0168-583x(99)00513-3

    Article  CAS  Google Scholar 

  48. Qu W, Wenzel C, Jahn A, Zeidler D (1998) In: Optoelectronic and microelectronic materials device, Perth, WA, Australia, p 380

  49. Yang R, Jiang J, Meng W, Wang W (2006) Microsyst Technol 12(6):545. doi:10.1007/s00542-005-0073-z

    Article  CAS  Google Scholar 

  50. Zhang J, Tan K, Hong G, Yang L, Gong H (2001) J Micromech Microeng 11(1):20. doi:10.1088/0960-1317/11/1/304

    Article  CAS  Google Scholar 

  51. Heckele M, Schomburg W (2004) J Micromech Microeng 14(3):1. doi:10.1088/0960-1317/14/3/R01

    Article  CAS  Google Scholar 

  52. Chien R, Jong W, Chen S (2005) J Micromech Microeng 15(8):1389. doi:10.1088/0960-1317/15/8/003

    Article  Google Scholar 

  53. Li Y, Minoru S, Kazuhiro H (2004) Opt Laser Eng 41(3):545. doi:10.1016/s0143-8166(03)00026-5

    Article  Google Scholar 

  54. Franssila S (ed) (2004) Introduction to microfabrication. Wiley, Chichester

    Google Scholar 

  55. Masuzawa T (2000) CIRP Ann Manuf Technol 49(2):473. doi:10.1016/s0007-8506(07)63451-9

    Article  Google Scholar 

  56. Uhlmann E, Piltz S, Doll U (2005) J Mater Process Technol 167(2–3):488. doi:10.1016/j.jmatprotec.2005.06.013

    Article  CAS  Google Scholar 

  57. Davim J, Jackson M (eds) (2009) Nano and micromachining. Wiley-ISTE, London

    Google Scholar 

  58. Fleischer J, Kotschenreuther J (2007) Int J Adv Manuf Technol 33(1):75. doi:10.1007/s00170-006-0596-1

    Article  Google Scholar 

  59. Gower M (2000) Opt Exp 7(2):56. doi:10.1364/OE.7.000056

    Article  CAS  Google Scholar 

  60. Heyl P, Olschewski T, Wijnaendts R (2001) Microelectron Eng 57–58:775. doi:10.1016/s0167-9317(01)00485-3

    Article  Google Scholar 

  61. Su Y, Shah J, Lin L (2004) J Micromech Microeng 14(3):415. doi:10.1088/0960-1317/14/3/015

    Article  Google Scholar 

  62. Piotter V, Hanemann T, Ruprecht R, Haußelt J (1997) Microsyst Technol 3(3):129. doi:10.1007/s005420050069

    Article  Google Scholar 

  63. Gornik C (2004) Macromol Symp 217(1):365. doi:10.1002/masy.200451332

    Article  CAS  Google Scholar 

  64. Chang P, Hwang S (2006) J Appl Polym Sci 102(4):3704. doi:10.1002/app.24515

    Article  CAS  Google Scholar 

  65. Yoo Y (2009) Curr Appl Phys 9(2, Supplement 1):12. doi:10.1016/j.cap.2008.12.023

  66. Chen S, Jong W, Chang Y, Chang J, Cin J (2006) J Micromech Microeng 16(9):1783. doi:10.1088/0960-1317/16/9/005

    Article  Google Scholar 

  67. Xie L, Ziegmann G (2008) Microsyst Technol 14(6):809. doi:10.1007/s00542-008-0566-7

    Article  CAS  Google Scholar 

  68. McFarland A, Colton J (2005) J Microelectromech Syst 14(6):1375. doi:10.1109/JMEMS.2005.851853

    Article  CAS  Google Scholar 

  69. Whiteside B et al (2004) Plast Rubber Compos 33:11. doi:10.1179/146580104225018346

  70. Tseng S, Chen Y, Kuo C, Shew B (2005) Microsyst Technol 12(1):116. doi:10.1007/s00542-005-0014-x

    Article  CAS  Google Scholar 

  71. Kim Y, Choi Y, Kang S (2005) Microsyst Technol 11(7):464. doi:10.1007/s00542-005-0596-3

    Article  Google Scholar 

  72. Yao D, Kimerling T, Kim B (2006) Polym Eng Sci 46(7):938. doi:10.1002/pen.20548

    Article  CAS  Google Scholar 

  73. Saito T, Satoh I, Kurosaki Y (2002) Polym Eng Sci 42(12):2418. doi:10.1002/pen.11128

    Article  CAS  Google Scholar 

  74. Yu M, Young W, Hsu P (2007) Mater Sci Eng A-Struct 460–461:288. doi:10.1016/j.msea.2007.02.036

    Article  CAS  Google Scholar 

  75. Michaeli W, Klaiber F (2007) In: 4M2007 International Conference on multi-material micro manufacture, Borovets, Bulgary, Taylor and Francis

  76. Sha B, Dimov S, Pham D, Griffiths C (2005) In: 4M2005: First International conference on multi-material micro manufacture

  77. Michaeli W, Opfermann D, Kamps T (2007) Int J Adv Manuf Technol 33(1):206. doi:10.1007/s00170-007-0951-x

    Article  Google Scholar 

  78. Srirojpinyo C et al (2004) In: NSTI nanotechnology conference, Boston, MA, USA, p 464

  79. Tofteberg T, Andreassen E (2008) In: 24th Annual meeting of the polymer processing society PPS-24, Salerno, Italy

  80. Mönkkönen K et al (2002) Polym Eng Sci 42(7):1600. doi:10.1002/pen.11055

    Google Scholar 

  81. Zhiltsova T, Neto V, Ferreira J, Oliveira M (2009) In: ICIT & MPT 2009, International conference, Ljubljana, Slovenia, 4–7 October 2009, p 165

  82. Sadiku-Agboola O, Rotimi Sadiku E, Adegbola A, Biotidara O (2011) Mater Sci Appl 2(1):30. doi:10.4236/msa.2011.21005

    Google Scholar 

  83. Malkin A, Isayev A (eds) (2006) Rheology: concepts, methods, and applications, vol 1. ChemTec Publishing, Toronto

    Google Scholar 

  84. Chen S, Tsai R, Chien R, Lin T (2005) Int Commun Heat Mass 32(3–4):501. doi:10.1016/j.icheatmasstransfer.2004.07.004

    Article  CAS  Google Scholar 

  85. Piotter V, Mueller K, Plewa K, Ruprecht R, Hausselt J (2002) Microsyst Technol 8(6):387. doi:10.1007/s00542-002-0178-6

    Article  CAS  Google Scholar 

  86. Su Y et al (2004) J Micromech Microeng 14(3):415. doi:10.1088/0960-1317/14/3/015

    Article  Google Scholar 

  87. Xu G, Yu L, Lee L, Koelling K (2005) Polym Eng Sci 45(6):866. doi:10.1002/pen.20341

    Article  CAS  Google Scholar 

  88. Lee J, Lee B, Kang T, Kwon T (2010) Polym Eng Sci 50(6):1186. doi:10.1002/pen.21642

    Article  CAS  Google Scholar 

  89. Rosenbaum E, Hatzikiriakos S (1997) AIChE J 43(3):598. doi:10.1002/aic.690430305

    Article  CAS  Google Scholar 

  90. Vasco J, Maia J, Pouzada A (2009) J Micromech Microeng 19(10):1. doi:10.1088/0960-1317/19/10/105012

    Article  CAS  Google Scholar 

  91. Cardozo D (2008) J Reinf Plast Compos 27(18):1963. doi:10.1177/0731684408092386

    Article  CAS  Google Scholar 

  92. Weng C, Lee W, To S, Jiang B (2009) Int Commun Heat Mass 36(3):213. doi:10.1016/j.icheatmasstransfer.2008.11.002

    Article  CAS  Google Scholar 

  93. Zhiltsova T, Oliveira M, Vasco J, Pouzada A, Pontes A (2011) In: VI International materials symposium MATERIAIS 2011|XV meeting of SPM, Guimarães, Portugal, 18–20 Apr 2011

  94. Yang C, Huang H-X, Castro JM, Yi AY (2011) Polym Eng Sci 51(5):959. doi:10.1002/pen.21914

    Article  CAS  Google Scholar 

  95. Kim D, Lee K, Kwon T, Lee S (2002) J Micromech Microeng 12(3):236. doi:10.1088/0960-1317/12/3/307

    Article  Google Scholar 

  96. Shi F, Zhang X, Li Q, Shen C (2010) In: 9th World Congress on computational mechanics and 4th Asian Pacific congress on computational mechanics, Sydney, Australia, vol 1, p 1

  97. Yu L, Lee L, Koelling K (2004) Polym Eng Sci 44(10):1866. doi:10.1002/pen.20188

    Article  CAS  Google Scholar 

  98. Young W (2005) Microsyst Technol 11(6):410. doi:10.1007/s00542-004-0474-4

    Article  CAS  Google Scholar 

  99. Nguyen-Chung T, Jüttner G, Löser C, Pham T, Gehde M (2010) Polym Eng Sci 50(1):165. doi:10.1002/pen.21536

    Article  CAS  Google Scholar 

  100. Kim D (2008) Microsyst Technol 14(9):1581. doi:10.1007/s00542-007-0553-4

    Article  CAS  Google Scholar 

  101. Keller A (1992) Pure Appl Chem 64(2):193. doi:10.1351/pac199264020193

    Article  CAS  Google Scholar 

  102. Favaro M, Marinelli A, Farah M, Bretas R (2008) Polym Eng Sci 48(2):257. doi:10.1002/pen.20858

    Article  CAS  Google Scholar 

  103. Cao J, Wang K, Cao W, Zhang Q, Du R, Fu Q (2009) J Appl Polym Sci 112(3):1104. doi:10.1002/app.29540

    Article  CAS  Google Scholar 

  104. Fellahi S, Favis B, Fisa B (1996) Polymer 37(13):2615. doi:10.1016/0032-3861(96)87620-8

    Article  CAS  Google Scholar 

  105. Zhang K, Lu Z (2008) Microsyst Technol 14(2):209. doi:10.1007/s00542-007-0412-3

    Article  CAS  Google Scholar 

  106. Lu Z, Zhang K (2009) Int J Adv Manuf Technol 40(5):490. doi:10.1007/s00170-007-1364-6

    Article  Google Scholar 

  107. Osswald TA, Hernández-Ortiz JP (eds) (2006) Polymer processing: modeling and simulation. Hanser Verlag, Cincinnati

    Google Scholar 

  108. Chanda M, Roy SK (eds) (2009) Plastics fundamentals, properties and testing. CRC, Boca Raton

    Google Scholar 

  109. Crawford R (ed) (1998) Plastics engineering. Butterworth-Heinemann, Oxford

  110. Hemker K, Sharpe W (2007) Annu Rev Mater Res 37(1):93. doi:10.1146/annurev.matsci.36.062705.134551

    Article  CAS  Google Scholar 

  111. Oliver W, Pharr G (2004) J Mater Res 19(1):3. doi:10.1557/jmr.2004.19.1.3

    Article  CAS  Google Scholar 

  112. Nguyen-Chung T, Mennig G, Boyanova M, Fakirov S, Baltá Calleja F (2004) J Appl Polym Sci 92(5):3362. doi:10.1002/app.20335

    Article  CAS  Google Scholar 

  113. Beake B (2006) J Phys D Appl Phys 39(20):4478. doi:10.1088/0022-3727/39/20/027

    Article  CAS  Google Scholar 

  114. Huang G, Wang B, Lu H (2004) Mech Time-Depend Mater 8(4):345. doi:10.1007/s11043-004-0440-7

    Article  CAS  Google Scholar 

  115. Huang G, Lu H (2007) Exp Mech 47(1):87. doi:10.1007/s11340-006-8277-4

    Article  Google Scholar 

  116. Lu H, Wang B, Ma J, Huang G, Viswanathan H (2003) Mech Time-Depend Mater 7(3):189. doi:10.1023/B:MTDM.0000007217.07156.9b

    Article  Google Scholar 

  117. VanLandingham MJV, Guthrie W, Meyers G (2001) Macromol Symp 167(1):15. doi:0.1002/1521-3900(200103)167:1<15:AID-MASY15>3.0.CO;2-

    Article  CAS  Google Scholar 

  118. Fang T, Chang W, Tsai S (2005) Microelectr J 36(1):55. doi:10.1016/j.mejo.2004.10.003

    Article  CAS  Google Scholar 

  119. Poilane C, Delobelle P, Lexcellent C, Hayashi S, Tobushi H (2000) Thin Solid Films 379(1–2):156. doi:10.1016/s0040-6090(00)01401-2

    Article  CAS  Google Scholar 

  120. Tweedie C, Van Vliet K (2006) J Mater Res 21(6):1576. doi:10.1557/JMR.2006.0197

    Article  CAS  Google Scholar 

  121. Odegard G, Gates T, Herring H (2005) Exp Mech 45(2):130. doi:10.1007/bf02428185

    Article  Google Scholar 

  122. Fischer-Cripps A (ed) (2011) Nanoindentation, 3rd edn. Springer, New York

    Google Scholar 

  123. Liu X, Piotter V (2007) Precis Eng 31(2):162. doi:10.1016/j.precisioneng.2006.05.001

    Article  Google Scholar 

  124. Oyen M (2007) Acta Mater 55(11):3633. doi:10.1016/j.actamat.2006.12.031

    Article  CAS  Google Scholar 

  125. Jee A, Lee M (2010) Polym Test 29(1):95. doi:10.1016/j.polymertesting.2009.09.009

    Article  CAS  Google Scholar 

  126. Tranchida D, Piccarolo S, Loos J, Alexeev A (2007) Macromolecules 40(4):1259. doi:10.1021/ma062140k

    Google Scholar 

  127. Hinz M et al (2004) Eur Polym J 40(5):957. doi:10.1016/j.eurpolymj.2004.01.027

    Article  CAS  Google Scholar 

  128. Moldflow® A (2011) Autodesk® Moldflow®. http://usa.autodesk.com/moldflow/. Accessed 17 Aug 2011

  129. ABAQUS (2004) ABAQUS interface for Moldflow user’s manual

  130. Yoo K et al (2003) Fiber Polym 4(2):89. doi:10.1007/bf02875443

    Google Scholar 

  131. Grujicic M, Sellappan V, Arakere G, Seyr N, Erdmann M (2008) J Mater Process Technol 195(1–3):282. doi:10.1016/j.jmatprotec.2007.05.016

    Article  CAS  Google Scholar 

  132. Kim S et al (2008) Polym Eng Sci 48(9):1840. doi:10.1002/pen.21152

    Article  CAS  Google Scholar 

  133. Kröner C, Altenbach H, Naumenko K (2009) Mech Compos Mater 45(3):249. doi:10.1007/s11029-009-9086-5

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Fundação para a Ciência e Tecnologia through the PhD Individual Grant SFRH/BP/45585/2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Zhiltsova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhiltsova, T.V., Oliveira, M.S.A. & Ferreira, J.A. Integral approach for production of thermoplastics microparts by injection moulding. J Mater Sci 48, 81–94 (2013). https://doi.org/10.1007/s10853-012-6669-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6669-7

Keywords

Navigation