Skip to main content
Log in

Structure and electrical conductivity relaxation studies of Nb2O5-doped B2O3–Bi2O3–LiF glasses

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glasses with composition (70 − x) B2O3·15Bi2O3·15LiF·xNb2O5 with x = 0–1.0 mol% were prepared by conventional glass-melting technique. The molar volume V m values decrease and the glass transition temperatures T g increase with increase of Nb2O5 content up to 0.2 mol%, which indicates that Nb5+ ions act as a glass former. Beyond 0.2 mol% Nb2O5 the V m increases and the T g decreases, which suggests that Nb5+ ions act as a glass modifier. The FTIR spectra suggest that Nb5+ ions are incorporated into the glass network as NbO6 octahedra, substituting BO4 groups. The temperature dependence of the dc conductivity follows the Greaves variable range hopping model below 454 K, and follows the small polaron hopping model at temperatures >454 K. σ dc, σ ac conductivity and dielectric constant (ε) decrease and activation energy for dc conduction ΔE dc which increases with increasing Nb2O5 content up to 0.2 mol%, whereas σ dc, σ ac and (ε) increase and ΔE dc decreases with increasing Nb2O5 content beyond 0.2 mol%. The impedance spectroscopy shows a single semicircle or arcs which indicate only the ionic conduction mechanism. The electric modulus formalism indicates that the conductivity relaxation is occurring at different frequencies exhibit temperature-independent dynamical process. The (FWHM) of the normalized modulus increases with increase in Nb2O5 content suggesting that the distribution of relaxation times is associated with the charge carriers Li+ or F ions in the glass network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Venkataraman B, Varma K (2006) Opt Mater 28(12):1423:1431

    Google Scholar 

  2. Baia L, Stefan R, Kiefer Popp J, Simon S (2002) J Non-Cryst Solids 303:379

    Article  CAS  Google Scholar 

  3. Fragoso W, Donega de M, Longo RL (2005) J Non-Cryst Solids 351:3121

    Article  CAS  Google Scholar 

  4. Krogh-Moe (1962) J Phys Chem Glas 3:101

    CAS  Google Scholar 

  5. Lorosch J, Couzi M, Pelovz J, Vacher R, Lavascur A (1984) J Non-Cryst Solids 69:1

    Article  Google Scholar 

  6. WatanabeT NanbaT, Miura Y (2002) J Non-Cryst Solids 297:73

    Article  Google Scholar 

  7. Agarwal A, Sheoran A, Sanghi S, Bhatnagar V, Gupta S, Arora M (2010) Spectrochim Acta Part A 75:964

    Article  CAS  Google Scholar 

  8. Sanghia S, Rani S, Agarwal A, Bhatnagar V (2010) Mater Chem Phys 120:381

    Article  Google Scholar 

  9. Rani S, Sanghi S, Agarwal A, Khasa S (2009) International seminar on science and technology of glass materials. IOP Conf Ser 2 012041

  10. Kulkarni A, Lunkenheimer P, Loidl A (1998) Solid State Ion 112:69

    Article  CAS  Google Scholar 

  11. Ahlawat N, Agarwal A, Sanghi S, Kishore N (2009) Solid State Ion 180:1356

    Article  CAS  Google Scholar 

  12. Srinivasu Ch, Sathe V, Awasthi A, Rahman S (2011) J Non-Cryst Solids 357(1–3):1051

    Article  CAS  Google Scholar 

  13. Malugani J, Robert G (1979) Mater Res Bull 14:1075

    Article  CAS  Google Scholar 

  14. Gandhi P, Deshpande V, Singh K (1989) Solid State Ion 36:97

    Article  CAS  Google Scholar 

  15. Bergoa P, Pontuschka W, Prison J (2007) Solid State Commun 141:545

    Article  Google Scholar 

  16. Srinivasarao G, Veeraiah N (2002) J Phys Chem Solids 63(4):705717

    Google Scholar 

  17. Markandeya SY, Salagram M, Vithal M, Singh A, Bhikshamaiah G (2008) J Non-Cryst Solids 354:5573

    Article  Google Scholar 

  18. Anshu D, Sanghi S, Agarwal A, Lather M, V. Bhatnagar, Khasa M (2009) International seminar on science and technology of glass materials. IOP Conf Ser 2(1) 012054

  19. Singh K (1997) Solid State Ion 93:147

    Article  Google Scholar 

  20. Verhofe A, Den-Hartog H (1995) J Non-Cryst Solids 182:221

    Article  Google Scholar 

  21. Bale S, Rao N, Rahaman S (2008) Solid State Sci 10:326

    Article  CAS  Google Scholar 

  22. Scholzelt H (1991) Glass: nature, structure and properties. Springer, New York

    Google Scholar 

  23. Kharlamov A, Almeida R, Heo J (1996) J Non-Cryst Solids 202:233

    Article  CAS  Google Scholar 

  24. Wells A (1984) Structural inorganic chemistry. Clarendon, Oxford

    Google Scholar 

  25. Imre A, Voss S, Mehrer H (2004) J Non-Cryst Solids 333:231

    Article  CAS  Google Scholar 

  26. Al-Shahrani A, Al-Hajry A, El-Desoky MM (2003) Phys Status Solidi 200(2):378

    Google Scholar 

  27. Mott N (1969) Philos Mag 19:835

    Article  CAS  Google Scholar 

  28. Ichinose N, Nakai Y (1996) J Non-Cryst Solids 203:353

    Article  CAS  Google Scholar 

  29. Ali A, Shaaban M (2010) Solid State Sci 12:2148

    Article  CAS  Google Scholar 

  30. Murugaraj R, Govindaraj G, George D (2003) Mater Lett 57:1656

    Article  CAS  Google Scholar 

  31. Jonscher A (1977) Nature 267:673

    Article  CAS  Google Scholar 

  32. Shaaban M, Ali A, El-Nimr M (2006) Mater Chem Phys 96:423

    Article  Google Scholar 

  33. Devidas G, Sankarappa T, Kumar M, Kumar S (2008) J Mater Sci 43:4856. doi:10.1007/s10853-008-2705-z

    Article  CAS  Google Scholar 

  34. Elliot S (1987) Adv Phys 36:53

    Article  Google Scholar 

  35. Lanfredi S, Saia P, Lebullenger R, Hernandez A (2002) Solid State Ion 146:329

    Article  CAS  Google Scholar 

  36. Sidebottom D (2003) J Phys 15:S1585

    CAS  Google Scholar 

  37. Lavín V, Rodríguez-Mendoza U, Martn I, Rodríguez V (2003) J Non-Cryst Solids 319:200

    Article  Google Scholar 

  38. Berkemeier F, Voss S, Imre AW, Mehrer H (2005) Solids 351:3816

    CAS  Google Scholar 

  39. Graça M, Ferreira da Silva M, Sombra A, Valente M (2007) Phys B 396:62

    Article  Google Scholar 

  40. Sanghi S, Duhan S, Agarwal A, Aghamkar P (2010) Phys B 405(18):3846

    Article  CAS  Google Scholar 

  41. Murawski L, Barczyn′ski R, Samatowicz D (2003) Solid State Ion 157:293

    Article  CAS  Google Scholar 

  42. Almond D, Duncan G, West A (1983) Solid State Ion 8:159

    Article  CAS  Google Scholar 

  43. Sanghi S, Rani S, Agarwal A, Seth V (2009) Phys B 404:969

    Article  Google Scholar 

  44. Duhan S, Sanghi S, Agarwal A, Sheoran A, Rani S (2009) Phys B 404:1648

    Article  CAS  Google Scholar 

  45. Howell F, Bose R, Macedo P, Moynihan C (1974) J Phys Chem 78:639

    Article  CAS  Google Scholar 

  46. Nadkarni G, Simmons J (1970) J Appl Phys 41:545

    Article  CAS  Google Scholar 

  47. Ghosh S, Ghosh A (2007) J Non-Cryst Solids 353:1287

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Prof. M. K. El-Nimer, physics Department, Faculty of Science, Tanta University for allowing us to carry out the experimental work ac measurements electrical conductivity and for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Shaaban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaaban, M.H. Structure and electrical conductivity relaxation studies of Nb2O5-doped B2O3–Bi2O3–LiF glasses. J Mater Sci 47, 5823–5832 (2012). https://doi.org/10.1007/s10853-012-6482-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6482-3

Keywords

Navigation