Skip to main content
Log in

Measurement of thermal strain and total polarization estimation of lead zirconate titanate–lead zinc niobate ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermal expansion properties have been measured for the ceramic lead zirconate titanate–lead zinc niobate [(1 − x)PZT–(x)PZN] in the temperature range of −100 to +450 °C. For all ceramics examined, the deviations from the straight line below Burns temperature were observed. The dynamic polarization fluctuations in their relaxor compositions are believed to play a role in this deviation. Burns temperature was determined and the local polarization (P d) was calculated from the thermal expansion data. Various aspects of understanding the polarization behavior and other effects in this ferroelectric system were examined and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bove T, Wolny W, Ringgaard E, Pedersen A (2001) J Eur Ceram Soc 21:1469

    Article  CAS  Google Scholar 

  2. Burns G, Dacol FH (1982) Solid State Commun 42:9

    Article  CAS  Google Scholar 

  3. Burns G, Dacol FH (1983) Phys Rev B 28:2527

    Article  CAS  Google Scholar 

  4. Burns G, Dacol FH (1986) Solid State Commun 58:567

    Article  CAS  Google Scholar 

  5. Zhao J, Glazounov AE, Zhang QM, Toby B (1998) Appl Phys Lett 72:1048

    Article  CAS  Google Scholar 

  6. La-Orauttapong D, Toulouse J, Ye ZG, Chen W, Erwin R, Robertson JL (2003) Phys Rev B 67:134110

    Article  Google Scholar 

  7. Kleemann W, Licinio P, Woike T, Pankrath R (2001) Phys Rev Lett 86:6014

    Article  CAS  Google Scholar 

  8. Viehland D, Jang SJ, Cross LE, Wuttig M (1992) Phys Rev B 46:8003

    Article  Google Scholar 

  9. Bovtun V, Petzelt J, Porokhonskyy V, Kamba S, Yakimenko Y (2001) J Eur Ceram Soc 21:1307

    Article  CAS  Google Scholar 

  10. Dec J, Kleemann W, Bobnar V, Kutnjak Z, Levstik A, Pirc R, Pankrath R (2001) Europhys Lett 55:781

    Article  CAS  Google Scholar 

  11. Bhalla AS, Guo R, Cross LE, Burns G, Dacol FH, Neurgaonkar RP (1987) Phys Rev B 36(4):2030

    Article  CAS  Google Scholar 

  12. Bhalla AS, Guo R, Cross LE, Burns G, Dacol FH, Neurgaonkar RP (1990) Ferroelectrics 106(1):161

    Article  Google Scholar 

  13. Moulson AJ, Herbert JM (2003) Electroceramics: materials, properties, applications. Wiley, Chichester

    Google Scholar 

  14. Bokov VA, Mylnikova IE (1961) Sov Phys Solid State 2:613

    Google Scholar 

  15. Uchino K (1998) Solid State Ion 108:43

    Article  CAS  Google Scholar 

  16. Vittayakorn N, Rujijanagul G, Tunkasiri T, Tan X, Cann DP (2003) J Mater Res 18:2882

    Article  CAS  Google Scholar 

  17. Fan H, Kim HE (2002) J Appl Phys 91:317

    Article  CAS  Google Scholar 

  18. Vittayakorn N, Rujijanagul G, Tan X, He H, Marquardt MA, Cann DP (2006) J Electroceram 16:141

    Article  CAS  Google Scholar 

  19. Ngamjarurojana A, Khamman O, Yimnirun R, Ananta S (2006) Mater Lett 60:2867

    Article  CAS  Google Scholar 

  20. Yimnirun R, Tipakontitikul R, Ananta S (2006) Int J Mod Phys 20:2415

    Article  CAS  Google Scholar 

  21. Ngamjarurojana A, Khamman O, Ananta S, Yimnirun R (2008) J Electroceram 21:786

    Article  CAS  Google Scholar 

  22. Imai K (1997) J Phys Soc Jpn 43:1320

    Article  Google Scholar 

  23. He Y (2004) Thermochim Acta 419:135

    Article  CAS  Google Scholar 

  24. Wongmaneerung R, Guo R, Bhalla A, Yimnirun R, Ananta S (2008) J Alloys Compd 461:565

    Article  CAS  Google Scholar 

  25. Wongsaenmai S, Yimnirun R, Ananta S, Guo R, Bhalla A (2008) Mater Lett 62:352

    Article  CAS  Google Scholar 

  26. Mueller V, Jager L, Beige H, Abicht HP, Muller T (2004) Solid State Commun 129:757

    Article  CAS  Google Scholar 

  27. Abe T, Reed ML (1994) In: Proceedings of the IEEE international conference on MEMS, p 164

Download references

Acknowledgements

MU and RY acknowledge the financial support from the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission and Suranaree University of Technology. This study was partially supported by the Industry/University Cooperative Research Center (IUCRC) in HDD Component, the Faculty of Engineering, Khon Kaen University and National Electronics and Computer Technology Center, National Science and Technology Development Agency (NSTDA). Additional support has also been provided through the NSF Grants DMR 0407462 and DMR 0844081, and INAMM Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muangjai Unruan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unruan, M., Prasatkhetragarn, A., Laosiritaworn, Y. et al. Measurement of thermal strain and total polarization estimation of lead zirconate titanate–lead zinc niobate ceramics. J Mater Sci 47, 5801–5805 (2012). https://doi.org/10.1007/s10853-012-6479-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6479-y

Keywords

Navigation