Skip to main content
Log in

Percolation threshold for electrical resistivity of Ag-nanoparticle/titania composite thin films fabricated using molecular precursor method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To find the percolation threshold for the electrical resistivity of metallic Ag-nanoparticle/titania composite thin films, Ag-NP/titania composite thin films, with different volumetric fractions of silver (0.26 ≤ φAg ≤ 0.68) to titania, were fabricated on a quartz glass substrate at 600 °C using the molecular precursor method. Respective precursor solutions for Ag-nanoparticles and titania were prepared from Ag salt and a titanium complex. The resistivity of the films was of the order of 10−2 to 10−5 Ω cm with film thicknesses in the range 100–260 nm. The percolation threshold was identified at a φAg value of 0.30. The lowest electrical resistivity of 10−5 Ω cm at 25 °C was recorded for the composite with the Ag fraction, φAg, of 0.55. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), and transmission electron microscopic (TEM) evaluation of the effect of the morphology and the nanostructures of the Ag nanoparticles in the composite thin films on the electrical resistivity of the film revealed that the films consist of rutile, anatase, and metallic Ag nanoparticles homogeneously distributed in the titania matrix. It could be deduced that the electrical resistivity of the thin films formed at 600 °C was unaffected by the anatase/rutile content within the thin film, whereas the shape, size, and separation distance of the Ag nanoparticles strongly influenced the electrical resistivity of the Ag-nanoparticle/titania composite thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li H, Zhao G, Song B, Han G (2008) J Cluster Sci 19:667. doi:10.1007/s10876-008-0207-4

    Article  Google Scholar 

  2. Cattin L, Morsli M, Dahou F, Yapi Abe S, Khelil A, Bernède JC (2010) Thin Solid Films 518:4560

    Article  CAS  Google Scholar 

  3. Kumpika T, Thongsuwan W, Singjai P (2008) Thin Solid Films 516:5640

    Article  CAS  Google Scholar 

  4. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol 1:1

    Article  CAS  Google Scholar 

  5. Nagai H, Mochizuki C, Hara H, Takano I, Sato M (2008) Sol Energy Mat Sol Cell 92:1136

    Article  CAS  Google Scholar 

  6. Lee H, Chou K, Shih Z (2005) Int J Adhes Adhes 25:437

    Article  CAS  Google Scholar 

  7. Ambrozic M, Dakskobler A, Valant M, Kosmac T (2005) Mater Sci-Pol 23(2):535

    CAS  Google Scholar 

  8. Zhang W, Dehghani-Sanij AA, Blackburn RS (2007) J Mater Sci 42:3408. doi:10.1007/s10853-007-1688-5

    Article  CAS  Google Scholar 

  9. Hanisch C, Ni N, Kulkarni A, Zaporojtchenko V, Strunskus T, Faupel F (2011) J Mater Sci 46:438. doi:10.1007/s10853-010-4887-4

    Article  CAS  Google Scholar 

  10. Gupta A, Choudhary V (2011) J Mater Sci 46:6416. doi:10.1007/s10853-011-5591-8

    Article  CAS  Google Scholar 

  11. Ho L, Nishikawa H, Takemoto T (2011) Electron 22:538. doi:10.1007/s10854-010-0174-z

    CAS  Google Scholar 

  12. Shin S (2010) Electron Mater Lett 6(2):65. doi:10.3365/eml.2010.06.065

    CAS  Google Scholar 

  13. Macwan DP, Dave PN, Chaturvedi S (2011) J Mater Sci 46:3669. doi:10.1007/s10853-011-5378-y

    Article  CAS  Google Scholar 

  14. Hong C, Park H, Moon J, Park H (2006) Thin Solid Films 515(3):957

    Article  CAS  Google Scholar 

  15. Lo CT, Chou K, Chin W (2001) J Adhes Sci Technol 15(7):783

    Article  CAS  Google Scholar 

  16. Wang Z, Helmersson U, Kall P (2002) Thin Solid Films 405:50

    Article  CAS  Google Scholar 

  17. Addamo M, Augugliaro V, Di Paola A, García-López E, Loddo V, Marcì G, Palmisano L (2008) Thin Solid Films 516:3802

    Article  CAS  Google Scholar 

  18. Traversa E, Di Vona M, Nunziante P, Via Licoccia S (2000) J Sol-Gel Sci Technol 19:733

    Article  CAS  Google Scholar 

  19. Miao L, Jin P, Kaneko K, Terai A, Nabatova-Gabain N, Tanemura S (2003) Appl Surf Sci 212:255

    Article  Google Scholar 

  20. Sancaktar E, Bai L (2011) Polymers 3:427. doi:10.3390/polym3010427

    Article  CAS  Google Scholar 

  21. Ren P, Fan∗ H, Wang X, Shi J (2011) J Alloy Compd 509:6423

    Article  CAS  Google Scholar 

  22. McNaught AD, Wilkinson A (1997) IUPAC compendium of chemical terminology, 2nd edn. Blackwell Science, Oxford, p 267. ISBN 0-86542-6848

  23. Sato M, Tanji T, Hara H, Nishide T, Sakashita Y (1999) J Mater Chem 9:1539

    Article  CAS  Google Scholar 

  24. Takahashia K, Hayakawa T, Yoshinari M, Hara H, Mochizuki C, Sato M, Nemoto K (2005) Thin Solid Films 484:1

    Article  Google Scholar 

  25. Sato M, Hara H, Nishide T, Sawada Y (1996) J Mater Chem 6:1767

    Article  CAS  Google Scholar 

  26. Sato M, Hara H, Kuritani H, Nishide T (1997) Sol Energ Mat Sol C 45:43

    Article  CAS  Google Scholar 

  27. Nishide T, Sato M, Hara H (2000) J Mater Chem 34:465

    Google Scholar 

  28. Spurr RA, Myers H (1957) Anal Chem 29:760. doi:10.1021/ac60125a006

    Article  CAS  Google Scholar 

  29. Powder Diffraction File (1987) In: Joint Committee on Powder Diffraction Standards International Center for Diffraction Data, Swarthmore, JCPDS card 4-783

  30. Powder Diffraction File (1987) In: Joint Committee on Powder Diffraction Standards International Center for Diffraction Data, Swarthmore, JCPDS card 21-1272

  31. Powder Diffraction File (1987) Joint Committee on Powder Diffraction Standards International Center for Diffraction Data, Swarthmore, JCPDS card 21-1276

  32. Powder Diffraction File (1987) Joint Committee on Powder Diffraction Standards International Center for Diffraction Data, Swarthmore, JCPDS card 40-909

  33. Zhang H, Banfield JF (2009) Am Mineral 84:528

    Google Scholar 

  34. Nishide T, Sato M, Hara H (2000) J Mater Sci 35:465. doi:10.1023/A:1004731804075

    Article  CAS  Google Scholar 

  35. Nagai H, Aoyama S, Hara H, Mochizuki C, Takano I, Baba N, Sato M (2009) J Mater Sci 44:861. doi:10.1007/s10853-008-3185-x

    Article  CAS  Google Scholar 

  36. Deepa KS, Kumari Nisha S, Parameswaran P, Sebastian MT, James J (2009) Appl Phys Lett 94:142902. doi:10.1063/1.3115031

    Article  Google Scholar 

  37. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) J Nanobiotechnol 3(6):1. doi:10.1186/1477-3155-3-6

    Google Scholar 

  38. Standridge SD, Schatz GC, Hupp JosephT (2009) Langmuir 25:2596

    Article  CAS  Google Scholar 

  39. Ye L, Lai Z, Liu J, Tholen A (1999) IEEE T Electron Pack Manuf 22:299

    Article  CAS  Google Scholar 

  40. Jeonga SH, Lim DC, Boo J-H, Lee SB, Hwang HN, Hwang CC, Kim YD (2007) Appl Catal A-Gen 320:152

    Article  Google Scholar 

  41. Kim WJ, Taya M, Nguyen MN (2009) Mech Mater 41:1116

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the “Energy Conversion Ecomaterials Center” project (2011–2016): Matching fund subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsunobu Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Likius, D.S., Nagai, H., Aoyama, S. et al. Percolation threshold for electrical resistivity of Ag-nanoparticle/titania composite thin films fabricated using molecular precursor method. J Mater Sci 47, 3890–3899 (2012). https://doi.org/10.1007/s10853-011-6245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6245-6

Keywords

Navigation