Skip to main content
Log in

Fast electrical response to volatile organic compounds of 2D Au nanoparticle layers embedded into polymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The conductivity of polymer–metal nanocomposites close to the percolation threshold is very sensitive to changes in the metal nanoparticle distances. Here the technical feasibility of a novel type of easy to prepare polymer–metal nanocomposite sensor is explored, which shall be able to detect a unique signal for various volatile organic compounds (VOCs) exhibiting a fast and reversible response. The composite consists of a nearly 2-dimensional Au nanoparticle layer near the percolation threshold thermally embedded into a thermoplastic polymer film. The sensoric response is based on the swelling behavior of the polymeric matrix upon exposure to the organic vapor molecules. Different from conventional nanocomposite sensors that require long-range diffusion of the volatile compound into the bulk of the matrix, the electrical response here only requires the penetration of the VOC a few nanometer below the surface thus causing a rapid detection. The degree of swelling depends on the type of polymer and VOC used as well as on the vapor pressure of the VOC leading to a characteristic response of each polymer to a specific VOC. This enables a “fingerprint” detection of different VOCs by an array of different polymer nanocomposite combined into one sensoric device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Severin EJ, Doleman BJ, Lewis NS (2000) Anal Chem 72:658

    Article  CAS  Google Scholar 

  2. Ryan MA, Shevade AV, Zhou H, Homer ML (2004) MRS Bull 10:714

    Google Scholar 

  3. Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL (2005) Science 307:1942

    Article  CAS  Google Scholar 

  4. Dong XM, Fu RW, Zhang MQ, Zhang B, Rong MZ (2004) Carbon 42:2551

    Article  CAS  Google Scholar 

  5. Dendrinos G, Quercia L, Raptis I, Manoli K, Chatzandroulis S, Goustouridis D, Beltsios K (2009) Microelectron Eng 86:1289

    Article  CAS  Google Scholar 

  6. Lee J, Park EJ, Choi J, Hong J, Shim SE (2010) Synth Met 160:566

    Article  CAS  Google Scholar 

  7. Chang CP, Yuan CL (2009) J Mater Sci 44:5485. doi:10.1007/s10853-009-3766-3

    Article  CAS  Google Scholar 

  8. Freund MS, Lewis NS (1995) Proc Natl Acad Sci USA 92:2652

    Article  CAS  Google Scholar 

  9. McGill RA, Mlsna TE, Chung R, Nguyen VK, Stepnowski J (2000) Sens Actuators B 65:5

    Article  Google Scholar 

  10. Di Natale C, Macagnano A, Martinelli E, Paolesse R, Arcangelo RD, Roscioni C, Finazzi-Agro A, Amico AD (2003) Biosens Bioelectron 18:1209

    Article  CAS  Google Scholar 

  11. Jie Z, Li-Hua H, Shan G, Hui Z, Jing-Gui Z (2006) Sens Actuators B 115:460

    Article  Google Scholar 

  12. Aifan C, Xiaodong H, Zhangfa T, Shouli B, Ruixian L, Chium LC (2006) Sens Actuators B 115:316

    Article  Google Scholar 

  13. Vossmeyer T, Guse B, Besnard I, Bauer RE, Mullen K, Yasuda A (2002) Adv Mater 14:238

    Article  CAS  Google Scholar 

  14. Grate JW, Nelson AN, Skaggs R (2003) Anal Chem 75:1868

    Article  CAS  Google Scholar 

  15. Faupel F (1992) Phys Stat Sol A 134:9

    Article  CAS  Google Scholar 

  16. Zaporojtchenko V, Strunskus T, Erichsen J, Faupel F (2001) Macromolecules 34:1125

    Article  CAS  Google Scholar 

  17. Erichsen J, Kanzow J, Schürmann U, Dolgner K, Günther-Schade K, Strunskus T, Zaporojtchenko V, Faupel F (2004) Macromolecules 37:1831

    Article  CAS  Google Scholar 

  18. Hanisch C, Kulkarni A, Zaporojtchenko V, Faupel F (2008) J Phys 100:052043

    Google Scholar 

  19. Takele H, Jebril S, Strunskus T, Zaporojchenko V, Adelung R, Faupel F (2008) Appl Phys A 92:345

    Article  CAS  Google Scholar 

  20. Kovacs GJ, Vincett PS (1982) J Colloid Interface Sci 903:35

    Google Scholar 

  21. Kovacs GJ, Vincett PS (1984) Thin Solid Films 111:65

    Article  CAS  Google Scholar 

  22. Zaporojtchenko V, Strunskus T, Behnke K, von Bechtolsheim C, Kiene M, Faupel F (2000) J Adhes Sci Technol 14:467

    Google Scholar 

  23. Kiefer T, Villanueva G, Brugger J (2009) Phys Rev E 80:021104

    Article  Google Scholar 

  24. Manoli K, Goustouridis D, Chatzandroulis S, Raptis I, Valamontes ES, Sanopoulou M (2006) Polymer 47:6117

    Article  CAS  Google Scholar 

  25. Manoli K, Goustouridis D, Raptis I, Valamontes E, Sanopoulou M (2009) J Appl Polym Sci 116:184

    Google Scholar 

  26. Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dipl.-Ing. Stefan Rehders for technical support of the experiments. Financial support by the German Research Foundation (DFG) through the Collaborative Research Center (SFB) 677 “Function by Switching”—Project C1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Faupel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanisch, C., Ni, N., Kulkarni, A. et al. Fast electrical response to volatile organic compounds of 2D Au nanoparticle layers embedded into polymers. J Mater Sci 46, 438–445 (2011). https://doi.org/10.1007/s10853-010-4887-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4887-4

Keywords

Navigation