Skip to main content
Log in

Ferroelectric phases and relaxor states in the novel lead-free (1 − x) Bi1/2K1/2TiO3 − x BiScO3 system (0 ≤ x ≤ 0.3)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The novel lead-free Bi-based ferroelectric system with perovskite structure (1 − x) Bi1/2K1/2TiO3x BiScO3, chemically designed to show a ferroelectric morphotropic phase boundary (MPB) and high piezoelectric response, was synthesized by the conventional solid-state reaction method for compositions with 0 ≤ x ≤ 0.3. X-ray diffraction analysis shows that the samples possess perovskite-type structure for x < 0.3 and reveals a phase evolution in the symmetry from tetragonal for x < 0.1 to pseudocubic for 0.1 ≤ x ≤ 0.3. Electrical and piezoelectric properties of ceramic samples were systematically investigated, and results indicate that a ferroelectric MPB is not formed, but instead a transition from conventional ferroelectric to relaxor ferroelectric behavior occurs when increasing the (Bi, Sc) content between 5 and 10%. The origin of this unexpected effect, and its implications in the design of novel lead-free piezoelectric materials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Shrout TR, Zhang SJ (2007) J Electroceram 19:113. doi:10.1007/s10832-007-9047-0

    Article  Google Scholar 

  2. Guo R, Cross LE, Park SE, Noheda B, Cox DE, Shirane G (2000) Phys Rev Lett 84:5423. doi:10.1103/PhysRevLett.84.5423

    Article  CAS  Google Scholar 

  3. Zhou CR, Liu XY, Li WZ, Yuan CL (2009) J Phys Chem Solid 70:541. doi:10.1016/j.jpcs.2008.12.013

    Article  CAS  Google Scholar 

  4. Yang ZP, Liu B, Wei LL, Hou YT (2008) Mater Res Bull 43:81. doi:10.1016/j.materresbull.2007.02.016

    Article  CAS  Google Scholar 

  5. Takenaka T, Nagata H (2005) J Eur Ceram Soc 25:2693. doi:10.1016/j.jeurceramsoc.2005.03.125

    Article  CAS  Google Scholar 

  6. Zhou CR, Liu XY, Li WZ, Yuan CL (2009) Solid State Commun 149:481. doi:10.1016/j.ssc.2008.12.034

    Article  CAS  Google Scholar 

  7. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Nature 432:84. doi:10.1038/nature03028

    Article  CAS  Google Scholar 

  8. Tinberg DS, Trolier-Mckinstry S (2007) J Appl Phys 101:024112. doi:10.1063/1.2430627

    Article  Google Scholar 

  9. Ogihara H, Randall CA, Trolier-Mckinstry S (2009) J Am Ceram Soc 92:110. doi:10.1111/j.1551-2916.2008.02798.x

    Article  CAS  Google Scholar 

  10. Takenaka T, Maruyama K, Sakata K (1991) Jpn J Appl Phys 30:2236. doi:10.1143/JJAP.30.2236

    Article  CAS  Google Scholar 

  11. Eitel RE, Randall CA, Shrout TR, Park SE (2002) Jpn J Appl Phys 41:2099. doi:10.1143/JJAP.41.2099

    Article  CAS  Google Scholar 

  12. Zhang SJ, Randall CA, Shrout TR (2003) Appl Phys Lett 83:3150. doi:10.1063/1.1619207

    Article  CAS  Google Scholar 

  13. Eitel RE, Randall CA, Shrout TR, Rehrig PW, Hackenberger W, Park SE (2001) Jpn J Appl Phys 40:5999. doi:10.1143/JJAP.40.5999

    Article  CAS  Google Scholar 

  14. Chaigneau J, Kiat JM, Malibert C, Bogicevic C (2007) Phys Rev B 76:094111. doi:10.1103/PhysRevB.76.094111

    Article  Google Scholar 

  15. Hungría T, Houdellier F, Algueró M, Castro A (2010) Phys Rev B 81:100102(R). doi:10.1103/PhysRevB.81.100102

    Article  Google Scholar 

  16. Rodel J, Jo W, Seifert KTP, Anton EM, Granzow TK, Damjanovic D (2009) J Am Ceram Soc 92:1153. doi:10.1111/j.1551-2916.2009.03061.x

    Article  Google Scholar 

  17. Li XH, Jiang M, Liu J, Zhu JL, Zhu XH, Li LH, Zhou Y, Zhu JG, Xiao DQ (2009) Phys Status Solidi A 206:2622. doi:10.1002/pssa.200925036

    Article  CAS  Google Scholar 

  18. Datta K, Thomas PA (2010) J Appl Phys 107:043516. doi:10.1063/1.3309064

    Article  Google Scholar 

  19. Zhong W, Vanderbilt D (1994) Phys Rev Lett 73:1861. doi:10.1103/PhysRevLett.73.1861

    Article  CAS  Google Scholar 

  20. Hiruma Y, Aoyagi R, Nagata H, Takenaka T (2005) Jpn J Appl Phys 44:5040. doi:10.1143/JJAP.44.5040

    Article  CAS  Google Scholar 

  21. Zhao SC, Li GR, Ding AL, Wang TB, Yin QR (2006) J Phys D 39:2277. doi:10.1088/0022-3727/39/10/042

    Article  CAS  Google Scholar 

  22. Hou YD, Hou L, Huang SY, Zhu MK, Wang H, Yan H (2006) Solid State Commun 137:658. doi:10.1016/j.ssc.2006.01.023

    Article  CAS  Google Scholar 

  23. Li ZF, Wang CL, Zhong WL, Li JC, Zhao ML (2003) J Appl Phys 94:2548. doi:10.1063/1.1592290

    Article  CAS  Google Scholar 

  24. Hou L, Hou YD, Song XM, Zhu MK, Wang H, Yan H (2006) Mater Res Bull 41:1330. doi:10.1016/j.materresbull.2005.12.010

    Article  CAS  Google Scholar 

  25. Wada T, Toyoike K, Imanaka Y, Matsuo Y (2001) Jpn J Appl Phys 40:5703. doi:10.1143/JJAP.40.5703

    Article  CAS  Google Scholar 

  26. Yang JF, Hou YD, Wang C, Zhu MK, Yan H (2007) Appl Phys Lett 91:023118. doi:10.1063/1.2754366

    Article  Google Scholar 

  27. Cross LE (1987) Ferroelectrics 76:241

    Article  CAS  Google Scholar 

  28. Jiménez R, Jiménez B, Carreaud J, Kiat JM, Dkhil B, Holc J, Kosec M, Algueró M (2006) Phys Rev B 74:184106. doi:10.1103/PhysRevB.74.184106

    Article  Google Scholar 

  29. Hiruma Y, Marumo K, Aoyagi R, Nagata H, Takenana T (2008) J Electroceram 21:296. doi:10.1007/s10832-007-9146-y

    Article  CAS  Google Scholar 

  30. Bokov AA, Ye ZG (2006) J Mater Sci 41:31. doi:10.1007/s10853-005-5915-7

    Article  CAS  Google Scholar 

  31. Burton BP, Cockayne E, Waghmare UV (2005) Phys Rev B 72:064113. doi:10.1103/PhysRevB.72.064113

    Article  Google Scholar 

  32. Trolliard G, Dorcet V (2008) Chem Mater 20:5074. doi:10.1021/cm800464d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L. M acknowledges the financial support of the Spanish Consejo Superior de Investigaciones Científicas (CSIC, JAEPre086). This research has been funded by Ministerio de Ciencia e Innovación (MICINN, Spain) through the MAT2010-18543 project. The authors are also grateful for the technical support provided by Mrs I. Martínez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Algueró.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Arias, L., Castro, A. & Algueró, M. Ferroelectric phases and relaxor states in the novel lead-free (1 − x) Bi1/2K1/2TiO3 − x BiScO3 system (0 ≤ x ≤ 0.3). J Mater Sci 47, 3729–3740 (2012). https://doi.org/10.1007/s10853-011-6222-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6222-0

Keywords

Navigation