Skip to main content
Log in

Synthesis of nanostructured materials using supercritical CO2: Part II. Chemical transformations

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article, the second part of our review series on the use of supercritical carbon dioxide (scCO2) for synthesis of nanostructured material deals with the production techniques that involve chemical transformations. Taking advantage of both solvent and anti-solvent tunable properties of scCO2, many nanostructured materials including supported/unsupported nanoparticles, quantum nanodots, nanofilms, nanorods, nanofoams, and nanowires can be prepared. Furthermore, material surfaces can be functionalized using scCO2. scCO2 can also be used as a carbon source for the controlled synthesis of carbon nanotubes and fullerenes or as an oxygen source for metal oxide nanostructures. Moreover, materials produced using scCO2 does not usually need additional purification or drying steps. Depending on surface properties, the morphology of the final material can be adjusted by tuning the process conditions and the reactant concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Burda C et al (2005) Chem Rev 105:1025

    Article  CAS  Google Scholar 

  2. Chorkendorff I, Niemantsverdriet JW (2010) Concepts of modern catalysis and kinetics, 2nd edn. Wiley, Weinheim

    Google Scholar 

  3. Antolini E (2009) Appl Catal B 88(1–2):1

    Article  CAS  Google Scholar 

  4. Vanrysselberghe V, Froment GF (1996) Ind Eng Chem Res 35(10):3311

    Article  CAS  Google Scholar 

  5. Bourikas K, Kordulis C, Lycourghiotis A (2006) Catal Rev 48:363

    Article  CAS  Google Scholar 

  6. Erkey C (2009) J Supercritical Fluids 47(3):517

    Article  CAS  Google Scholar 

  7. Cao G (2004) Nanostructures & Nanomaterials, 1st edn. Imperial College Press, London

    Book  Google Scholar 

  8. Watkins JJ, McCarthy TJ (1995) Chem Mater 7(11):1991

    Article  CAS  Google Scholar 

  9. Zhang Y, Erkey C (2006) J Supercritical Fluids 38(2):252

    Article  CAS  Google Scholar 

  10. Bagratashvili VN et al (2010) Laser Phys Lett 7(5):401

    Article  CAS  Google Scholar 

  11. Gittard SD et al (2010) J Mater Eng Perform 19(3):368

    Article  CAS  Google Scholar 

  12. Rybaltovskii AO et al (2009) Russ J Phys Chem B 3(7):1106

    Article  Google Scholar 

  13. Hasell T et al (2008) Adv Funct Mater 18(8):1265

    Article  CAS  Google Scholar 

  14. Niu A et al (2010) J Phys Chem C 114(29):12728

    Article  CAS  Google Scholar 

  15. Kondoh E et al (2009) Microelectron Eng 86(4–6):902

    Article  CAS  Google Scholar 

  16. Yin JZ, Xu QQ, Wang AQ (2010) Chem Eng Commun 197(4):627

    Article  CAS  Google Scholar 

  17. Kim E-B et al (2011) Korean J Chem Eng 28:440

    Article  CAS  Google Scholar 

  18. Marre S et al (2009) J Phys Chem C 113(13):5096

    Article  CAS  Google Scholar 

  19. Kondoh E, Fukuda J (2008) J Supercritical Fluids 44:466

    Article  CAS  Google Scholar 

  20. Chen ZM et al (2009) Ind Eng Chem Res 48(7):3441

    Article  CAS  Google Scholar 

  21. Wakayama H, Fukushima Y (2009) J Chem Eng Jpn 42(2):134

    Article  CAS  Google Scholar 

  22. Petkov N et al (2008) Chem Mater 20:1902

    Article  CAS  Google Scholar 

  23. Aksomaityte G et al (2010) Chem Mater 22:4246

    Article  CAS  Google Scholar 

  24. Peng Q, Spagnola JC, Parsons GN (2008) J Electrochem Soc 155(9):D580

    Article  CAS  Google Scholar 

  25. Hasell T et al (2010) Chem Mater 22(2):557

    Article  CAS  Google Scholar 

  26. Tenorio MJ et al (2009) J Supercritical Fluids 49(3):369

    Article  CAS  Google Scholar 

  27. Cangul B et al (2009) J Supercritical Fluids 50(1):82

    Article  CAS  Google Scholar 

  28. Puniredd SR, Nguan BCC, Srinivasan MP (2009) J Colloid Interf Sci 333(2):679

    Article  CAS  Google Scholar 

  29. Morère J et al (2011) J Supercritical Fluids 56:222

    Article  CAS  Google Scholar 

  30. Martinez N et al (2011) J Supercritical Fluids 56:322

    Article  CAS  Google Scholar 

  31. Bayrakceken A et al (2009) Chem Eng Commun 196(1–2):194

    CAS  Google Scholar 

  32. Ang SY, Walsh DA (2010) J Power Sources 195(9):2557

    Article  CAS  Google Scholar 

  33. Lin CS et al (2008) J Phys Chem C 112(27):10068

    Article  CAS  Google Scholar 

  34. Haji S, Zhang Y, Erkey C (2010) Appl Catal A 374(1–2):1

    CAS  Google Scholar 

  35. Garrido GI et al (2008) Appl Catal A 338:58

    Article  CAS  Google Scholar 

  36. Bozbag SE et al (2011) J Supercritical Fluids 56:105

    Article  CAS  Google Scholar 

  37. Puniredd SR et al (2009) J Colloid Interf Sci 332(2):505

    Article  CAS  Google Scholar 

  38. Lee BI et al (2009) Bull Korean Chem Soc 30(8):1701

    Article  CAS  Google Scholar 

  39. Cimpeanu V et al (2009) Angew Chem Int Ed 48:1085

    Article  CAS  Google Scholar 

  40. Karanikas CF, Watkins JJ (2010) Microelectron Eng 87(4):566

    Article  CAS  Google Scholar 

  41. Yu QS et al (2008) Green Chem 10(10):1061

    Article  CAS  Google Scholar 

  42. Niu A et al (2009) Ind Eng Chem Res 48:7103

    Article  CAS  Google Scholar 

  43. Aschenbrenner O et al (2007) J Supercritical Fluids 41(2):179

    Article  CAS  Google Scholar 

  44. Darr JA, Poliakoff M (1999) Chem Rev 99(2):495

    Article  CAS  Google Scholar 

  45. Erkey C (2000) J Supercritical Fluids 17(3):259

    Article  CAS  Google Scholar 

  46. Smart NG et al (1997) Talanta 44(2):137

    Article  CAS  Google Scholar 

  47. Kazarian SG et al (1996) J Am Chem Soc 118(7):1729

    Article  CAS  Google Scholar 

  48. Liu D, Tomasko DL (2007) J Supercritical Fluids 39(3):416

    Article  CAS  Google Scholar 

  49. Chrastil J (1982) J Phys Chem 86(15):3016

    Article  CAS  Google Scholar 

  50. Alibouri M, Ghoreishi SM, Aghabozorg HR (2009) AICHE J 55(10):2665

    Article  CAS  Google Scholar 

  51. Aymonier C et al (2010) J Supercritical Fluids 53(1–3):102

    Article  CAS  Google Scholar 

  52. Saquing CD et al (2004) J Phys Chem B 108(23):7716

    Article  CAS  Google Scholar 

  53. Saquing CD et al (2005) Micropor Mesopor Mater 80(1–3):11

    Article  CAS  Google Scholar 

  54. Zhang Y et al (2008) J Supercritical Fluids 44(1):71

    Article  CAS  Google Scholar 

  55. Caputo G, De Marco I, Reverchon E (2010) J Supercritical Fluids 54(2):243

    Article  CAS  Google Scholar 

  56. Tan CS, Liou DC (1990) Ind Eng Chem Res 29(7):1412

    Article  CAS  Google Scholar 

  57. Afrane G, Chimowitz EH (1993) J Supercritical Fluids 6(3):143

    Article  CAS  Google Scholar 

  58. Kelley FD, Chimowitz EH (1990) AICHE J 36(8):1163

    Article  CAS  Google Scholar 

  59. Brunner G, Johannsen M (2006) J Supercritical Fluids 38(2):181

    Article  CAS  Google Scholar 

  60. Puniredd SR, Weiyi S, Srinivasan MP (2008) J Colloid Interf Sci 320(1):333

    Article  CAS  Google Scholar 

  61. Zhang Y et al (2005) Ind Eng Chem Res 44(11):4161

    Article  CAS  Google Scholar 

  62. Bayrakceken A et al (2007) Scripta Mater 56:101

    Article  CAS  Google Scholar 

  63. Erriguible A et al (2009) J Supercritical Fluids 48(1):79

    Article  CAS  Google Scholar 

  64. Bosco JP, Humbert MP, Chen JG (2009) In: Ozkan US (ed) Design of heterogeneous catalysts new approaches based on synthesis, characterization and modeling. Wiley, Weinheim, p 195

    Google Scholar 

  65. Kitchin JR et al (2004) Phys Rev Lett 93:156801

    Article  CAS  Google Scholar 

  66. Ferrando R, Jellinek J, Johnston RL (2008) Chem Rev 108(3):845

    Article  CAS  Google Scholar 

  67. Yen CH et al (2007) Energy Fuels 21(4):2268

    Article  CAS  Google Scholar 

  68. Bayrakceken A et al (2010) Int J Hydrogen Energy 35(21):11669

    Article  CAS  Google Scholar 

  69. Byrd AJ, Pant KK, Gupta RB (2007) Ind Eng Chem Res 46:3574

    Article  CAS  Google Scholar 

  70. Bozbag SE (2008) Polymer Foaming by Supercritical CO2, in Génie des Procédés et de l’Environnement. Institut National Polytechnique de Toulouse: Toulouse

  71. Yang J et al (2008) Eur Polym J 44:1331

    Article  CAS  Google Scholar 

  72. Blackburn JM et al (2001) Science 294(5540):141

    Article  CAS  Google Scholar 

  73. Kim H (2003) J Vac Sci Technol B 21:2231

    Article  CAS  Google Scholar 

  74. Hunde ET, Watkins JJ (2004) Chem Mater 16(3):498

    Article  CAS  Google Scholar 

  75. Pierson HO (1999) Handbook of chemical vapor deposition (CVD) principles, technology, and applications, 2nd edn. Noyes Publications, New York

    Google Scholar 

  76. Koga T et al (2005) Top Catal 32:257

    Article  CAS  Google Scholar 

  77. Wakayama H, Goto Y, Fukushima Y (2003) Phys Chem Chem Phys 5:3784

    Article  CAS  Google Scholar 

  78. Wakayama H et al (2001) Chem Mater 13:2392

    Article  CAS  Google Scholar 

  79. Wakayama H, Hatanaka T, Fukushima Y (2004) Chem Lett 33:658

    Article  CAS  Google Scholar 

  80. Xu Q et al (2006) Mater Sci Eng A 435:158

    Article  CAS  Google Scholar 

  81. Ni W et al (2008) Bioresources 3(3):774

    CAS  Google Scholar 

  82. Shah PS et al (2001) J Phys Chem B 105:9433

    Article  CAS  Google Scholar 

  83. Kameo A, Yoshimura T, Esumi K (2003) Colloids Surf A 215:181

    Article  CAS  Google Scholar 

  84. McLeod MC, Gale WF, Roberts CB (2004) Langmuir 20:7078

    Article  CAS  Google Scholar 

  85. Eastoe J, Gold S (2005) Phys Chem Chem Phys 7:1352

    Article  CAS  Google Scholar 

  86. Eastoe J, Duponta A, Steytler DC (2003) Curr Opin Colloid Interface Sci 8:267

    Article  CAS  Google Scholar 

  87. Dalvi VH, Srinivasan V, Rossky PJ (2010) J Phys Chem C 114:15553

    Article  CAS  Google Scholar 

  88. Dalvi VH, Srinivasan V, Rossky PJ (2010) J Phys Chem C 114:15562

    Article  CAS  Google Scholar 

  89. Shah PS et al (2002) J Phys Chem B 106:12178

    Article  CAS  Google Scholar 

  90. Meziani MJ et al (2005) J Supercritical Fluids 34:91

    Article  CAS  Google Scholar 

  91. Peng Z, Yang H (2009) Nano Today 4:143

    Article  CAS  Google Scholar 

  92. Barrett CA et al (2009) Nanotechnology 20(27):275605. doi:10.1088/0957-4484/20/27/275605

    Article  CAS  Google Scholar 

  93. Chen CY et al (2010) Int J Hydrogen Energy 35(11):5490

    Article  CAS  Google Scholar 

  94. Cheng W-T, Chih Y-W (2010) J Supercritical Fluids 54:272

    Article  CAS  Google Scholar 

  95. Collins G et al (2010) Chem Mater 22:5235

    Article  CAS  Google Scholar 

  96. Smetana AB et al (2008) J Phys Chem C 112:2294

    Article  CAS  Google Scholar 

  97. Harada M et al (2010) J Colloid Interf Sci 343(2):537

    Article  CAS  Google Scholar 

  98. Kometani N et al (2008) Colloids Surf A 321(1–3):301

    Article  CAS  Google Scholar 

  99. Harada M et al (2010) J Colloid Interf Sci 343:537

    Article  CAS  Google Scholar 

  100. Kamrupia IR et al (2011) J Supercritical Fluids 55:1089

    Article  CAS  Google Scholar 

  101. Wang JS et al (2010) Langmuir 26(2):1117

    Article  CAS  Google Scholar 

  102. Jiao J et al (2009) Mater Res Bullet 44:1161

    Article  CAS  Google Scholar 

  103. Shimizu R et al (2008) J Supercritical Fluids 44(1):109

    Article  CAS  Google Scholar 

  104. Zhao Y et al (2010) Langmuir 26:4581

    Article  CAS  Google Scholar 

  105. Wu CI et al (2008) Mater Lett 62(12–13):1923

    Article  CAS  Google Scholar 

  106. Lee M-H, Lin H-Y, Thomas JL (2006) J Am Ceram Soc 89:3624

    Article  CAS  Google Scholar 

  107. Hoefling TA, Enick RM, Beckman EJ (1991) J Phys Chem 95(19):7127

    Article  CAS  Google Scholar 

  108. Liu Z-T, Erkey C (2000) Langmuir 17(2):274

    Article  CAS  Google Scholar 

  109. Ji M et al (1999) J Am Chem Soc 121:2631

    Article  CAS  Google Scholar 

  110. Ohde H et al (2002) Nano Lett 2:721

    Article  CAS  Google Scholar 

  111. Dong X et al (2002) Ind Eng Chem Res 41(5):1038

    Article  CAS  Google Scholar 

  112. Reverchon E, Adami R (2006) J Supercritical Fluids 37(1):1

    Article  CAS  Google Scholar 

  113. Dong X, Potter D, Erkey C (2002) Ind Eng Chem Res 41(18):4489

    Article  CAS  Google Scholar 

  114. Aymonier C et al (2006) J Supercritical Fluids 38(2):242

    Article  CAS  Google Scholar 

  115. Cason JP, Khambaswadkar K, Roberts CB (2000) Ind Eng Chem Res 39:4749

    Article  CAS  Google Scholar 

  116. Wang JS et al (2009) Chemistry 15(17):4458

    Article  CAS  Google Scholar 

  117. Ohde M, Ohde H, Wai CM (2005) Langmuir 21:1738

    Article  CAS  Google Scholar 

  118. Shimizu K et al (2008) Energy Fuels 22(4):2543

    Article  CAS  Google Scholar 

  119. Chattopadhyay P, Gupta RB (2003) Ind Eng Chem Res 42:465

    Article  CAS  Google Scholar 

  120. Reverchon E, Porta GD, Torino E (2010) J Supercritical Fluids 53:95

    Article  CAS  Google Scholar 

  121. Thakur R, Gupta RB (2005) Ind Eng Chem Res 44:3086

    Article  CAS  Google Scholar 

  122. Zhang J et al (2006) J Supercritical Fluids 36:194

    Article  CAS  Google Scholar 

  123. Holmes JD et al (1999) Langmuir 15:6613

    Article  CAS  Google Scholar 

  124. Hakuta Y, Hayashi H, Arai K (2003) Curr Opin Solid State Mater Sci 7:341

    Article  CAS  Google Scholar 

  125. Hakuta Y, Hayashi H, Arai K (2003) Curr Opin Solid State Mater Sci 7(4–5):341

    Article  CAS  Google Scholar 

  126. Hakuta Y et al (1998) J Mater Sci Lett 17:1211

    Article  CAS  Google Scholar 

  127. Alonso E, Montequi I, Cocero MJ (2009) J Supercritical Fluids 49(2):233

    Article  CAS  Google Scholar 

  128. Alonso E et al (2007) J Supercritical Fluids 39(3):453

    Article  CAS  Google Scholar 

  129. Sun ZY et al (2010) J Mater Chem 20(10):1947

    Article  CAS  Google Scholar 

  130. Sierra-Pallares J et al (2009) Chem Eng Sci 64(13):3051

    Article  CAS  Google Scholar 

  131. Du L et al (2009) J Supercritical Fluids 47:447

    Article  CAS  Google Scholar 

  132. Wood CD et al (2005) In: Kemmere MF, Meyer T (eds) Supercritical carbon dioxide in polymer reaction engineering. Wiley, Weinheim

    Google Scholar 

  133. Mueller PA et al (2005) In: Kemmere MF, Meyer T (eds) Supercritical carbon dioxide in polymer reaction engineering. Weinheim, Wiley

    Google Scholar 

  134. Ye L et al (2006) J Appl Polym Sci 102(3):2863

    Article  CAS  Google Scholar 

  135. Steffens C et al (2010) J Food Eng 101(4):365

    Article  Google Scholar 

  136. Yuvaraj H et al (2008) Colloid Surf A 313:300

    Article  CAS  Google Scholar 

  137. Yuvaraj H et al (2010) Mol Cryst Liq Cryst 532:488

    Article  CAS  Google Scholar 

  138. Yuvaraj H, Shim JJ, Lim KT (2010) Polym Adv Technol 21(6):424

    CAS  Google Scholar 

  139. Yuvaraj H et al (2008) Eur Polym J 44(3):637

    Article  CAS  Google Scholar 

  140. Yuvaraj H et al (2008) J Nanosci Nanotechnol 8(9):4743

    Article  CAS  Google Scholar 

  141. Yuvaraj H et al (2009) Mol Cryst Liq Cryst 514:355

    CAS  Google Scholar 

  142. Ganapathy HS et al (2009) J Supercritical Fluids 51(2):264

    Article  CAS  Google Scholar 

  143. Beckman EJ (2005) In: Kemmere MF, Meyer T (eds) Supercritical carbon dioxide in polymer reaction engineering. Wiley, Weinheim

    Google Scholar 

  144. Lee J-Y et al (2002) J Nanoparticle Res 4:53

    Article  CAS  Google Scholar 

  145. Hossain MD et al (2009) J Colloid Interf Sci 336(2):443

    Article  CAS  Google Scholar 

  146. Sun F et al (2010) Polym Compos 31(1):163

    CAS  Google Scholar 

  147. Matsuyama K, Mishima K (2009) J Supercritical Fluids 49(2):256

    Article  CAS  Google Scholar 

  148. Hwang HS et al (2009) J Supercritical Fluids 50(3):292

    Article  CAS  Google Scholar 

  149. Watkins JJ, McCarthy TJ (1994) Macromolecules 27(17):4845

    Article  CAS  Google Scholar 

  150. Gupta RB, Shim J–J (2007) Solubility in supercritical carbon dioxide. CRC Press, Boca Raton

    Google Scholar 

  151. Kiran E (2009) J Supercritical Fluids 47(3):466

    Article  CAS  Google Scholar 

  152. Sauk J, Byun J, Kim H (2004) J Power Sources 132:59

    Article  CAS  Google Scholar 

  153. Byun J, Sauk J, Kim H (2009) Int J Hydrogen Energy 34:6437

    Article  CAS  Google Scholar 

  154. Sauk J et al (2005) Korean J Chem Eng 22:605

    Article  CAS  Google Scholar 

  155. Hoshi T et al (2008) J Supercritical Fluids 44(3):391

    Article  CAS  Google Scholar 

  156. Hoshi T et al (2010) J Mater Chem 20(23):4897

    Article  CAS  Google Scholar 

  157. Wang GZ et al (2009) J Nanosci Nanotechnol 9(2):1465

    Article  CAS  Google Scholar 

  158. Wang YM, Wang YJ, Lu XB (2008) Polymer 49(2):474

    Article  CAS  Google Scholar 

  159. Urbanczyk L et al (2008) J Mater Chem 18(39):4623

    Article  CAS  Google Scholar 

  160. Urbanczyk L et al (2008) Polymer 49(18):3979

    Article  CAS  Google Scholar 

  161. Hojjati B, Charpentier PA (2010) Polymer 51(23):5345

    CAS  Google Scholar 

  162. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, London, p 908

    Google Scholar 

  163. Charpentier PA, Li XS, Sui RH (2009) Langmuir 25(6):3748

    Article  CAS  Google Scholar 

  164. Lucky RA, Charpentier PA (2010) Appl Catal B 96(3–4):516

    CAS  Google Scholar 

  165. Lucky RA, Charpentier PA (2008) Adv Mater 20(9):1755

    Article  CAS  Google Scholar 

  166. Sui RH, Rizkalla AS, Charpentier PA (2008) Cryst Growth Des 8(8):3024

    Article  CAS  Google Scholar 

  167. Kendall JL et al (1999) Chem Rev 99(2):543

    Article  CAS  Google Scholar 

  168. Li XX, Vogt BD (2008) Chem Mater 20(9):3229

    Article  CAS  Google Scholar 

  169. Xu WZ, Charpentier PA (2009) J Phys Chem C 113(16):6859

    Article  CAS  Google Scholar 

  170. Chowdhury MBI et al (2010) Langmuir 26(4):2707

    Article  CAS  Google Scholar 

  171. Lucky RA, Charpentier PA (2009) Nanotechnology 20(19):195601

    Article  CAS  Google Scholar 

  172. Chun BS et al (2010) Korean J Chem Eng 27(3):983

    Article  CAS  Google Scholar 

  173. Hertz A et al (2010) J Eur Ceram Soc 30(7):1691

    Article  CAS  Google Scholar 

  174. Li XX et al (2008) Langmuir 24(20):11935

    Article  CAS  Google Scholar 

  175. Pham QM et al (2009) Synthetic Met 159(19–20):2141

    Article  CAS  Google Scholar 

  176. Jensen H et al (2007) Ang Chem Int Ed 46(7):1113

    Article  CAS  Google Scholar 

  177. Pham QM, Kim JS, Kim S (2010) Synthetic Met 160(5–6):394

    Article  CAS  Google Scholar 

  178. Combes JR, White LD, Tripp CP (1999) Langmuir 15(22):7870

    Article  CAS  Google Scholar 

  179. Zemanian TS et al (2001) Langmuir 17(26):8172

    Article  CAS  Google Scholar 

  180. Stojanovic D et al (2009) J Mater Sci 44(23):6223. doi:10.1007/s10853-009-3842-8

    Article  CAS  Google Scholar 

  181. Roy C et al (2010) J Supercritical Fluids 54(3):362

    Article  CAS  Google Scholar 

  182. Gu W, Tripp CP (2006) Langmuir 22(13):5748

    Article  CAS  Google Scholar 

  183. Garcia-Gonzalez CA et al (2009) J Colloid Interf Sci 338(2):491

    Article  CAS  Google Scholar 

  184. Garcia-Gonzalez CA et al (2009) J Phys Chem C 113(31):13780

    Article  CAS  Google Scholar 

  185. Kartal AM, Erkey C (2010) J Supercritical Fluids 53(1–3):115

    Article  CAS  Google Scholar 

  186. Domingo C, Loste E, Fraile J (2006) J Supercritical Fluids 37(1):72

    Article  CAS  Google Scholar 

  187. Li LY, Li CY, Ni CY (2006) J Am Chem Soc 128(5):1692

    Article  CAS  Google Scholar 

  188. Li CY et al (2005) Adv Mater 17(9):1198

    Article  CAS  Google Scholar 

  189. He LH, Zheng XL, Xu Q (2010) J Phys Chem B 114(16):5257

    Article  CAS  Google Scholar 

  190. Fifield LS et al (2004) J Phys Chem B 108(25):8737

    Article  CAS  Google Scholar 

  191. Zhang ZW et al (2008) Macromolecules 41(8):2868

    Article  CAS  Google Scholar 

  192. Zhang F et al (2008) Macromolecules 41(12):4519

    Article  CAS  Google Scholar 

  193. Motiei M et al (2001) J Am Chem Soc 123:8624

    Article  CAS  Google Scholar 

  194. Qian W et al (2006) Carbon 44:1298

    Article  CAS  Google Scholar 

  195. Cao F et al (2008) J Phys Chem C 112:2337

    Article  CAS  Google Scholar 

  196. Lou Z et al (2004) Carbon 42(1):229

    Article  CAS  Google Scholar 

  197. Li Z et al (2007) Adv Mater 19:3043

    Article  CAS  Google Scholar 

  198. Simate GS et al (2010) J Nat Gas Chem 19:453

    Article  CAS  Google Scholar 

  199. Tomai T et al (2007) J Supercritical Fluids 41(3):404

    Article  CAS  Google Scholar 

  200. Kawashima A et al (2007) Nanotechnology 18(49):495603

    Article  CAS  Google Scholar 

  201. Ito T et al (2004) J Mater Chem 14(10):1513. doi:10.1039/B402653E

    Article  CAS  Google Scholar 

  202. Vostrikov AA et al (2009) J Supercritical Fluids 48(2):154

    Article  CAS  Google Scholar 

  203. Vostrikov AA et al (2009) J Supercritical Fluids 48(2):161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the TUBITAK (Scientific and Technical Research Council of Turkey) under project #108M387.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Erkey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozbag, S.E., Sanli, D. & Erkey, C. Synthesis of nanostructured materials using supercritical CO2: Part II. Chemical transformations. J Mater Sci 47, 3469–3492 (2012). https://doi.org/10.1007/s10853-011-6064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-6064-9

Keywords

Navigation