Skip to main content
Log in

A porous carbon foam prepared from liquefied birch sawdust

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Carbon foam was prepared by submitting birch sawdust to liquefaction, resinification, foaming, carbonization, and activation steps. The foam was characterized by TG and DTG, XRD, SEM, and nitrogen adsorption at 77 K. A mechanism for the formation of the porous carbon foam was proposed. Solid non-graphitized lightweight carbon foams with specific surface areas of 534–555 m2/g and cell sizes of 100–200 μm were obtained, depending on the carbonization or activation temperature used. The intermediate liquefied birch-based resin foam exhibits thermal stability superior to liquefied wood and inferior to phenolic resin, and decomposes rapidly in two stages, at 285.7 and 412.9 °C, respectively. Further activation of the carbon foam in a stream of nitrogen above 800 °C improves the pore structure and homogeneity of the cell size significantly. The matrix of the foams contains a large number of micropores, and the microstructure becomes more ordered as the activation temperature is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tondi G, Fierrob V, Pizzia A, Celzard A (2009) Carbon 47:1480. doi:10.1016/j.carbon.2009.01.041

    Article  CAS  Google Scholar 

  2. Job N, Pirard R, Marien J, Pirard JP (2004) Carbon 42:619. doi:10.1016/j.carbon.2003.12.072

    Article  CAS  Google Scholar 

  3. Biesmans G, Mertens A, Duffours L, Woignier T, Phalippou J (1998) J Non-Cryst Solids 225:64. doi:10.1016/S0022-3093(98)00010-6

    Article  CAS  Google Scholar 

  4. Chen C, Kennel EB, Stille AH, Stansberry PG, Zondlo JW (2006) Carbon 44:1535. doi:10.1016/j.carbon.2005.12.021

    Article  CAS  Google Scholar 

  5. Inagaki M, Morishita T, Kuno A, Kito T, Hirano M, Suwa T, Kusakawa K (2004) Carbon 42:497. doi:10.1016/j.carbon.2003.12.080

    Article  CAS  Google Scholar 

  6. Lorjai P, Wongkasemjit S, Chaisuwan T (2009) Mater Sci Eng 527:77. doi:10.1016/j.msea.2009.07.032

    Article  Google Scholar 

  7. Prabhakaran K, Singh PK, Gokhale NM, Sharma SC (2007) J Mater Sci 42:3894. doi:10.1007/s10853-006-0481-1

    Article  CAS  Google Scholar 

  8. Rios RVRA, Martínez-Escandell M, Molina-Sabio M, Rodríguez-Reinoso F (2006) Carbon 44:1448. doi:10.1016/j.carbon.2005.11.028

    Article  CAS  Google Scholar 

  9. Rutledge AR, Venditti RA, Pawlak JJ, Patel S, Cibils L (2008) BioResources 3:1063

    Google Scholar 

  10. Eksilioglu A, Gencay N, Yardim MF, Ekinci E (2006) J Mater Sci 41:2743. doi:10.1007/s10853-006-7079-5

    Article  CAS  Google Scholar 

  11. Li WQ, Zhang HB, Xiong X (2011) J Mater Sci 46:1143. doi:10.1007/s10853-010-5099-7

    Article  CAS  Google Scholar 

  12. Wang M-X, Wang C-Y, Zhang W (2006) J Mater Sci 41:6100. doi:10.1007/s10853-006-0626-2

    Article  CAS  Google Scholar 

  13. Gell K, van Groenigen JM, Cayuela ML (2011) J Hazard Mater 186:2017. doi:10.1016/j.jhazmat.2010.12.105

    Article  CAS  Google Scholar 

  14. Şensöz S (2003) Bioresour Technol 89:307. doi:10.1016/S0960-8524(03)00059-2

    Article  Google Scholar 

  15. Darmstadt H, Pantea D, Summchen L, Ronald U, Kaliaguine S, Roy C (2000) J Anal Appl Pyrolysis 53:1. doi:10.1016/S0165-2370(99)00051-0

    Article  CAS  Google Scholar 

  16. Huang DC, Liu QL, Zhang W, Ding J, Gu JJ, Zhu SM, Guo QX, Zhang D (2011) J Mater Sci 46:5064. doi:10.1007/s10853-011-5429-4

    Article  CAS  Google Scholar 

  17. Shulman GP, Lochte HW (1966) J Appl Polym Sci 10:619. doi:10.1002/app.1966.070100407

    Article  CAS  Google Scholar 

  18. Katović Z (1967) J Appl Polym Sci 11:85. doi:10.1002/app.1967.070110106

    Article  Google Scholar 

  19. Ozaki J, Ohizumi W, Oya A (2000) Carbon 38:1515. doi:10.1016/S0008-6223(00)00113-5

    Article  CAS  Google Scholar 

  20. Mansanray KG, Ghaly AE (1998) Bioresour Technol 65:13. doi:10.1016/S0960-8524(98)00031-5

    Article  Google Scholar 

  21. Shafizadeh F, DeGroote WF (1976) In: Shafizadeh F, Sarkanen KV, Tillman DA (eds) Thermal uses and properties of carbohydrates and lignins. Academic Press, New York, p 1

    Google Scholar 

  22. Doh GH, Lee SY, Kang IA, Kong YT (2005) Compos Struct 68:103. doi:10.1016/j.compstruct.2004.03.004

    Article  Google Scholar 

  23. Chang C, Tackett JR (1991) Thermochimica Acta 192:181. doi:10.1016/0040-6031(91)87160-X

    Article  CAS  Google Scholar 

  24. Lin Q, Zheng M, Qin T, Guo R, Tian P (2010) J Anal Appl Pyrol 89:112. doi:10.1016/j.jaap.2010.06.005

    Article  CAS  Google Scholar 

  25. Wang Q, Liang X, Zhang R, Liu C, Liu X, Qiao W, Zhan L, Ling L (2009) New Carbon Mater 24:55. doi:10.1016/S1872-5805(08)60036-0

    Article  Google Scholar 

  26. Ma X, Zhao G (2010) Wood Sci Technol 44:3. doi:10.1007/s00226-009-0264-3

    Article  CAS  Google Scholar 

  27. Takagi H, Maruyama K, Yoshizawa N, Yamada Y, Sato Y (2004) Fuel 83:2427. doi:10.1016/j.fuel.2004.06.019

    Article  CAS  Google Scholar 

  28. Liu CL, Guo QG, Shi JL, Liu L (2004) New Carbon Mater 19:124 (In Chinese with English abstract)

  29. Aso H, Matsuoka K, Sharma A, Tomita A (2004) Carbon 42:2963. doi:10.1016/j.carbon.2004.07.009

    Article  CAS  Google Scholar 

  30. Inagaki M, Ibuki T, Takeichi T (1992) J Appl Polym Sci 44:521. doi:10.1002/app.1992.070440316

    Article  CAS  Google Scholar 

  31. Prauchner MJ, Pasa VMD, Molhallem NDS, Otani C, Otani S, Pardini LC (2005) Biomass Bioenerg 28:53. doi:10.1016/j.biombioe.2004.05.004

    Article  CAS  Google Scholar 

  32. Liu S, Wang R (2011) J Porous Mater 18:99. doi:10.1007/s10934-010-9360-x

    Article  CAS  Google Scholar 

  33. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity second ed. Academic Press, New York, p 233

    Google Scholar 

Download references

Acknowledgement

The present study was financially supported by the Cultivation Project for Promoting Excellence in Research for Ph.D. Degrees from the Northeast Forestry University (GRAP09), Harbin, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, R., Li, W. & Liu, S. A porous carbon foam prepared from liquefied birch sawdust. J Mater Sci 47, 1977–1984 (2012). https://doi.org/10.1007/s10853-011-5993-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5993-7

Keywords

Navigation