Skip to main content

Advertisement

Log in

Modified activated carbon with an enhanced nitrobenzene adsorption capacity

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

To enhance nitrobenzene removal from aqueous solution, commercial activated carbon (AC) was modified by oxidation with HNO3 followed by heat treatment in a nitrogen atmosphere. The modification process introduced oxygen-containing functional groups and changed the charge properties of the AC surface. The effects of surface chemical properties and pore structure on the adsorption of nitrobenzene by the AC were investigated through kinetics and equilibrium isotherms. HNO3 oxidation modified the surface chemical properties and increased the number of acidic oxygen-containing surface groups, but had an almost negligible effect on the pore structure. Subsequent heat treatment caused decomposition of oxygen-containing functional groups on the AC surface, increased the pH point of zero charge (pHPZC) and increased the number of mesopores. The maximum adsorption capacity achieved by the modified AC was 1,443.53 mg g−1, 3.33 times of that unmodified AC. HNO3 oxidation combined with heat treatment was an effective method for the preparation of AC with high nitrobenzene adsorption capacity and fast adsorption kinetics. An appropriate pHPZC, amount of surface oxygen groups and the presence of well-developed mesopores together with micropores were the main reasons for the high nitrobenzene adsorption capacity of the modified AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.S. Mattson, H.B. Mark, Activated Carbon Surface Chemistry and Adsorption from Solution (Marcel Dekker, New York, 1971)

    Google Scholar 

  2. C.Y. Yin, M.K. Aroua, W.M. Ashri, Sep. Purif. Technol. 52, 40 (2007)

    Article  Google Scholar 

  3. F.M. Tennant, D.W. Mazyck, Carbon 45, 858 (2007)

    Article  CAS  Google Scholar 

  4. A.D. Marczewska, J. Goworek, A. Swiaztkowski, B. Buczek, Carbon 42, 301 (2004)

    Article  Google Scholar 

  5. I.I. Salame, T.J. Bandosz, J. Colloid Interface Sci. 264, 307 (2003)

    Article  CAS  Google Scholar 

  6. E. Muller, K. Gubbins, Carbon 36, 1433 (1998)

    Article  CAS  Google Scholar 

  7. S.X. Liu, X. Chen, X.Y. Chen, H.L. Wang, Z.F. Liu, J. Hazard. Mater. 141, 315 (2007)

    Article  CAS  Google Scholar 

  8. J.T. Bandosz, Carbon 37, 483 (1999)

    Article  CAS  Google Scholar 

  9. C.C. Huang, H.S. Li, C.H. Chen, J. Hazard. Mater. 159, 523 (2008)

    Article  CAS  Google Scholar 

  10. M. Franz, H.A. Arafat, N.G. Pinto, Carbon 38, 1807 (2000)

    Article  CAS  Google Scholar 

  11. J. Rangal-Mendez, F. Cannon, Carbon 43, 467 (2005)

    Article  Google Scholar 

  12. L.R. Radovic, I.F. Silva, J.I. Ume, Carbon 35, 1339 (1997)

    Article  CAS  Google Scholar 

  13. F. Villacañas, M. Pereira, J. Órfão, J. Colloid Interface Sci. 293, 128 (2006)

    Article  Google Scholar 

  14. A. Contescu, C. Contescu, K. Putyera, J.A. Schwarz, Carbon 35, 83 (1997)

    Article  CAS  Google Scholar 

  15. F. Haghseresht, S. Nouri, G.Q.M. Lu, Carbon 41, 881 (2003)

    Article  CAS  Google Scholar 

  16. C.O. Ania, J.B. Parra, J.J. Pis, Fuel Process. Technol. 79, 265 (2002)

    CAS  Google Scholar 

  17. Y. El-Sayed, J.T. Bandosz, J. Colloid Interface Sci. 273, 64 (2004)

    Article  CAS  Google Scholar 

  18. M. Chen, L. Cui, C.H. Li, G.W. Diao, J. Hazard. Mater. 162, 23 (2009)

    Article  CAS  Google Scholar 

  19. Y. Kato, M. Machida, H. Tatsumoto, J. Colloid Interface Sci. 322, 394 (2008)

    Article  CAS  Google Scholar 

  20. S. Kodama, H. Sekiguchi, Thin Solid Films 506–507, 327 (2006)

    Article  Google Scholar 

  21. C.T. Hsieh, H. Teng, Carbon 38, 863 (2000)

    Article  CAS  Google Scholar 

  22. B.M. Babić, S.K. Milonjić, M.J. Polovina, B.V. Kaludierovic, Carbon 37, 477 (1999)

    Article  Google Scholar 

  23. I.I. Salame, T.J. Bandosz, J. Colloid Interface Sci. 240, 252 (2001)

    Article  CAS  Google Scholar 

  24. S.N. Joong, J.A. Schwarz, Carbon 28, 675 (1990)

    Article  Google Scholar 

  25. D.D. Do, Chem. Eng. Sci. 51, 4145 (1996)

    Article  CAS  Google Scholar 

  26. G. Drazer, R. Chertco, L. Bruno, M. Rosen, Chem. Eng. Sci. 54, 4285 (1999)

    Article  CAS  Google Scholar 

  27. M.J.G. Linders, L.J.P. Broekeb, T.A. Nijhuisc, F. Kapteijnc, J.A. Moulijn, Carbon 39, 2113 (2001)

    Article  CAS  Google Scholar 

  28. H.D. Do, D.D. Do, I. Prasetyo, Chem. Eng. Sci. 56, 4351 (2001)

    Article  CAS  Google Scholar 

  29. D.P. Xu, S.H. Yoon, I. Mochida, W.M. Qiao, Y.G. Wang, L.C. Ling, Microporous Mesoporous Mater. 115, 461 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by the Distinguished Young Scientist Foundation of Heilongjiang Province (JC200801) and the National Natural Science Foundation of China (No. 30771692).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouxin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Wang, R. Modified activated carbon with an enhanced nitrobenzene adsorption capacity. J Porous Mater 18, 99–106 (2011). https://doi.org/10.1007/s10934-010-9360-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-010-9360-x

Keywords

Navigation