Skip to main content
Log in

Co-sintering and microstructural characterization of steel/cobalt base alloy bimaterials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The objective of this study is to process a bimaterial that combines the mechanical strength of a martensitic steel (X3CrNiMo13-4) and the wear and corrosion resistance of a cobalt base alloy (Stellite 6). The powder metallurgy route includes three steps: co-compaction, debinding, and pressureless co-sintering. The experimental approach consists in studying the compaction, the debinding and the sintering behavior of single materials (dimensional changes during sintering, microstructure, and hardness after sintering) before studying co-sintering. The co-sintering temperature range is defined from thermo-chemical calculations and single material sintering experiments especially for Stellite 6. Finally, the co-sintering ability is evaluated (green and final densities, shrinkage mismatch, coefficient of thermal expansion…) and the bimaterial sintering is studied. Despite the shrinkage mismatch of single materials, cohesion is achieved between the two materials through the infiltration of the supersolidus liquid from the Co base alloy to the steel and through the formation of an interdiffusion layer between the two materials characterized by a composition gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Firouzdor V, Simchi A (2010) J Compos Mater 44:417

    Article  CAS  Google Scholar 

  2. Simchi A, Rota A, Imgrund P (2006) Mater Sci Eng A 424:282

    Article  Google Scholar 

  3. Firouzdor V, Simchi A, Kokabi AH (2008) J Mater Sci 43:55. doi:10.1007/s10853-007-2077-9

    Article  CAS  Google Scholar 

  4. Peng LM, Wang JH, Li H, Zhao JH, He LH (2005) Scr Mater 52:243

    Article  CAS  Google Scholar 

  5. He Z, Ma J, Zhang R, Li T (2003) J Eur Ceram Soc 23:1943

    Article  CAS  Google Scholar 

  6. Luo Y, Pan W, Shuqin L, Wang R, Li J (2003) Mater Sci Eng A 345:99

    Article  Google Scholar 

  7. Olevsky EA, Wang X, Maximenko A, Meyers MA (2007) J Am Ceram Soc 90:3047

    Article  CAS  Google Scholar 

  8. Boonyongmaneerat Y, Schuh CA (2006) Metall Mater Trans A 37:1435

    Article  Google Scholar 

  9. Feng H, Meng Q, Zhou Y, Jia D (2005) Mater Sci Eng A 397:92

    Article  Google Scholar 

  10. Jingchuan Z, Zhonghong L, Zhongda Y, Jaeho J, Sooyoung L (2001) Mater Chem Phys 68:130

    Article  Google Scholar 

  11. Dourandish M, Simchi A (2009) J Mater Sci 44:1264. doi:10.1007/s10853-008-3241-6

    Article  CAS  Google Scholar 

  12. Simchi A, Petzoldt F (2010) Metall Mater Trans A 41A:233

    Article  CAS  Google Scholar 

  13. Davis JR (2000) Nickel, cobalt, and their alloys. ASM International, Materials Park, p 349

    Google Scholar 

  14. Guyard C, Allibert CH, Driole J, Raisson G (1981) Sci Sinter 13(3):149

    CAS  Google Scholar 

  15. Guyard C, Barbangelo A, Allibert CH, Driole J (1981) J Mater Sci 16:604. doi:10.1007/BF02402776

    Article  CAS  Google Scholar 

  16. Mars O, Szabo C (2004) Patent N°WO 2004/085099 A1

  17. European standard EN 10088-1 (2005) Stainless steels—part 1: list of stainless steels. AFNOR, France

    Google Scholar 

  18. European standard EN 10088-3 (2005) Stainless steels—part 3: technical delivery conditions for semi-finished products, bars, rods, wire, sections and bright products of corrosion resisting steels for general purposes. AFNOR, France

    Google Scholar 

  19. Bergkvist A, Andersson O (2001) Proc EuroPM2001 1, pp 232–237

  20. Sundman B, Jansson B, Andersson JO (1985) CALPHAD 9(2):153

    Article  CAS  Google Scholar 

  21. TCFE5 (2005) Thermo-Calc Software AB, Stockholm

  22. Kaufman L, Bernstein H (1970) Computer calculation of phase diagrams. Academic Press, New York

    Google Scholar 

  23. Saunders N, Miodownik AP (1998) In: Cahn RW (ed) CALPHAD Calculation of phase diagrams, a comprehensive guide. Pergamon Materials Series, Oxford

    Google Scholar 

  24. Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics: the Calphad Method. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. Hwang KS, Lin KH (1992) Int J Powder Metall 28(4):353

    CAS  Google Scholar 

  26. Ward M (1977) Int J Powder Metall Powder Technol 13(3):197

    CAS  Google Scholar 

  27. Baum MM, Becker RM, Lappas AM, Moss JA, Apalian D, Saha D, Kapinus VA (2004) Metall Mater Trans B 35B:381

    Article  CAS  Google Scholar 

  28. Chvátalová K, Houserová J, Šob M, Vřešt’ál J (2004) J Alloys Compd 378:71

    Article  Google Scholar 

  29. Miettinen J (1999) CALPHAD 23(2):231

    Article  CAS  Google Scholar 

  30. Raghavan V (2003) J Phase Equilib 24(3):261

    Article  CAS  Google Scholar 

  31. Tomiska J (2004) J Alloys Compd 379:176

    Article  CAS  Google Scholar 

  32. Hansen M, Anderko K (1958) Constitution of binary alloys. Mac Graw-Hill Book Comp, New York

    Google Scholar 

  33. German RM (1997) Metall Mater Trans A 28A:1553

    Article  CAS  Google Scholar 

  34. Durand-Charre M, Chaix JM, Yang PH (1997) Adv Mater Res 4–5:355

    Article  Google Scholar 

  35. Wu YX, Blaine D, Marx B, Schlaefer C, German RM (2202) Metall Mater Trans A 33A:2185

    Google Scholar 

  36. Davis JR (1994) Stainless steels. ASM International, Materials Park, pp 14–15

    Google Scholar 

  37. Cambridge Engineering Selector (CES software), Granta Design Limited, UK

  38. Hamiuddin M (1987) PMI 19(2):22

    CAS  Google Scholar 

  39. Toennes C, German RM (1992) PMI 24(3):151

    CAS  Google Scholar 

  40. Toennes C, Ernst P, Meyer G, German RM (1992) Adv Powder Metall Part Mater 3:371

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Florence Doré and Paul Calves from CETIM (Saint Etienne, France) for compaction experiments. They acknowledge Direction Générale des Entreprises, Conseil Général de la Loire, Saint Etienne Métropole, and CETIM Foundation for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Pascal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pascal, C., Thomazic, A., Antoni-Zdziobek, A. et al. Co-sintering and microstructural characterization of steel/cobalt base alloy bimaterials. J Mater Sci 47, 1875–1886 (2012). https://doi.org/10.1007/s10853-011-5976-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5976-8

Keywords

Navigation