Skip to main content
Log in

Contributions to the interfacial adhesion in co-sintered bilayers

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The adhesive strength of co-sintered bilayers is influenced by several factors, including the nature of bonding along the joined interface, residual stresses evolved during processing, and the sintered properties of the individual layers. Here these separate contributions are isolated through careful control of the co-sintering process for W/Al2O3 bilayers, and in particular through control of the W-layer properties by using the process of activated sintering. Four-point bending delamination tests are used to evaluate adhesion and strength of the bilayers, and the interfacial fracture mechanics of the system is numerically studied using finite element simulations. Improvements in sintered density are found to increase the adhesive strength of the system only up to a point, beyond which shrinkage mismatch compromises the intrinsic toughness of the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.F. Bunshah: J. Vac. Sci. Technol. B, 1984, vol. 2, pp. 789–99.

    Article  CAS  Google Scholar 

  2. M.J. Pomeroy: Mater. Des., 2005, vol. 26, pp. 223–31.

    CAS  Google Scholar 

  3. L.G. Vettraino and S.H. Risbud: IEEE Trans. Compon. Packag. Technol., 1999, vol. 22, pp. 270–81.

    Article  Google Scholar 

  4. A.J. Blodgett: Sci. Am., 1983, vol. 249, pp. 86–96.

    Article  Google Scholar 

  5. D.L. Wilcox, F.H. Rong, and D. Anderson: Proc. Int. Symp. Microelectron., 1997, vol. 3235, pp. 17–23.

    CAS  Google Scholar 

  6. L.A. Xue, T.L. Cable, and E.A. Barringer: Ceram. Eng. Sci. Proc., 2003, vol. 24, pp. 281–86.

    CAS  Google Scholar 

  7. T. Cheng and R. Raj: J. Am. Ceram. Soc., 1989, vol. 72, pp. 1649–55.

    Article  CAS  Google Scholar 

  8. K. Otsuka, T. Usami, and M. Sekihata: Am. Ceram. Soc. Bull., 1981, vol. 60, pp. 540–45.

    CAS  Google Scholar 

  9. K. Biswas and G.S. Upadhyaya: Mater. Des., 1998, vol. 19, pp. 231–40.

    CAS  Google Scholar 

  10. J.R. Floyd: Am. Ceram. Soc. Bull., 1963, vol. 42, pp. 65–70.

    CAS  Google Scholar 

  11. B.C. Foster, F.J. Bachner, E.S. Tormey, M.A. Occhionero, and P.A. White: IEEE Trans. Components Hybrids Manuf. Technol., 1991, vol. 14, pp. 784–89.

    Article  CAS  Google Scholar 

  12. D.A. Chance: Metall. Trans., 1970, vol. 1, pp. 685–94.

    CAS  Google Scholar 

  13. S.J. Howard, R.A. Stewart, and W.J. Clegg: Key Eng. Mater., 1996, vol. 116–117, pp. 331–350.

    Article  Google Scholar 

  14. T.W. Clyne and S.C. Gill: J. Therm. Spray Technol., 1996, vol. 5, pp. 401–18.

    CAS  Google Scholar 

  15. H. Tomaszewski, J. Strzeszewski, and W. Gebicki: J. Eur. Ceram. Soc., 1999, vol. 19, pp. 255–62.

    Article  CAS  Google Scholar 

  16. X. Wang and P. Xiao: Acta Mater., 2004, vol. 52, pp. 2591–603.

    Article  CAS  Google Scholar 

  17. P.Z. Cai, D.J. Green, and G.L. Messing: J. Am. Ceram. Soc., 1997, vol. 80, pp. 1929–39.

    Article  CAS  Google Scholar 

  18. R.R. Tummala: Am. Ceram. Soc. Bull., 1988, vol. 67, pp. 752–58.

    CAS  Google Scholar 

  19. W.H. Kohl: Vacuum, 1964, vol. 14, pp. 333–54.

    Article  CAS  Google Scholar 

  20. P.F. Varadi and R. Dominguez: Am. Ceram. Soc. Bull., 1966, vol. 45, pp. 789–91.

    CAS  Google Scholar 

  21. P.S. Kislyi, B.D. Storozh, and M.L. Gorb: Sov. Powder Metall. Met. Ceram., 1977, vol. 16, pp. 299–302.

    Article  Google Scholar 

  22. R.M. German and Z.A. Munir: Metall. Trans. A, 1976, vol. 7A, pp. 1873–77.

    CAS  Google Scholar 

  23. N.M. Hwang, Y.J. Park, D.Y. Kim, and D.Y. Yoon: Scripta Mater., 2000, vol. 42, pp. 421–25.

    Article  CAS  Google Scholar 

  24. I.H. Moon, J.Y. Kim, and Y.D. Kim: Int. J. Refract. Met. Hard Mater., 1984, vol. 3, pp. 176–79.

    CAS  Google Scholar 

  25. P.G. Charalambides, J. Lund, A.G. Evans, and R.M. McMeeking: J. Appl. Mech., 1989, vol. 56, pp. 77–82.

    Google Scholar 

  26. A. Cazzato and K.T. Faber: J. Am. Ceram. Soc., 1997, vol. 80, pp. 181–88.

    Article  CAS  Google Scholar 

  27. P. Lucksanasombool, W.A.J. Higgs, R.J.E.D. Higgs, and M.V. Swain: Biomaterials, 2003, vol. 24, pp. 1159–66.

    Article  CAS  Google Scholar 

  28. J. Malzbender, R.W. Steinbrech, and L. Singheiser: J. Mater. Res., 2003, vol. 18, pp. 929–34.

    CAS  Google Scholar 

  29. A.J. Phillipps, W.J. Clegg, and T.W. Clyne: Acta Metall. Mater., 1993, vol. 41, pp. 819–27.

    Article  CAS  Google Scholar 

  30. Z. Suo and J.W. Hutchinson: Mater. Sci. Eng., 1989, vol. A107, pp. 135–43.

    Google Scholar 

  31. L.L. Seigle and C.D. Dickinson: Refractory Metals and Alloys. 1963, Interscience Publishers, New York, NY, vol. 17, pp. 65–117.

    Google Scholar 

  32. S.H. Crandall, N.C. Dahl, and T.J. Lardner: An introduction to the Mechanics of Solids. 1999, McGraw-Hill: New York, NY, pp. 416–510.

    Google Scholar 

  33. C.J. Li and R.M. German: Metall. Trans. A, 1983, vol. 14A, pp. 2031–41.

    CAS  Google Scholar 

  34. Y.H. Kim, S.H. Cho, J.K. Lee, and I.H. Moon: Int. J. Refract. Met. Hard Mater., 1988, vol. 7, pp. 206–09.

    CAS  Google Scholar 

  35. J.F. Shackelford and W. Alexander: CRC Materials Science and Engineering Handbook, 3rd ed. 2001, CRC Press, Boca Raton, FL, p. 462.

    Google Scholar 

  36. W.B. Eisen: ASM Handbook: Powder Metal Technologies and Applications. 1998, ASM, Materials Park, OH, p. 907.

    Google Scholar 

  37. G.T. Murray: Handbook of Materials Selection for Engineering Applications. 1997, Marcel Dekker, Inc., New York, NY, p. 263.

    Google Scholar 

  38. D.N. Boccaccini and A.R. Boccaccini: J. Nondestr. Eval., 1997, vol. 16, pp. 187–92.

    Article  Google Scholar 

  39. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure & Properties. 1988, Pergamon Press: Elmsford, NY, p. 207.

    Google Scholar 

  40. J.R. Rice: J. Appl. Mech., 1988, vol. 55, pp. 98–103.

    Article  Google Scholar 

  41. P.P.L. Matos, R.M. McMeeking, P.G. Charalambides, and M.D. Drory: Int. J. Fract., 1989, vol. 40, pp. 235–54.

    Article  Google Scholar 

  42. P.G. Charalambides, H.C. Cao, J. Lund, and A.G. Evans: Mech. Mater., 1990, vol. 8, pp. 269–83.

    Article  Google Scholar 

  43. S. Roham, K. Hardikar, and P. Woytowitz: J. Mater. Res., 2004, vol. 19, pp. 3019–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boonyongmaneerat, Y., Schuh, C.A. Contributions to the interfacial adhesion in co-sintered bilayers. Metall Mater Trans A 37, 1435–1442 (2006). https://doi.org/10.1007/s11661-006-0088-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0088-9

Keywords

Navigation