Skip to main content

Advertisement

Log in

Synthesis and electrochemical analyses of vapor-grown carbon fiber/pyrolytic carbon-coated LiFePO4 composite

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A vapor-grown carbon fiber/pyrolytic carbon-coated LiFePO4 (VGCF/PCLFP) composite has been prepared in one step through a solid-state reaction accompanied by a gas-phase decomposition process. This method leads to the formation of a conductive network composed of pyrolytic carbon layer and in situ vapor-grown carbon fiber in the composite. The amount of carbon in the composite has been determined by a modified formula based on thermogravimetric analysis to be around 3.0 wt%. The optimized electrode of VGCF/PCLFP composite can deliver 150 mAhg−1 at 0.5 C rate, 137 mAhg−1 at 1.0 C rate and 132 mAhg−1 at 3.0 C rate. And its discharge capacity loses only ~4% at a higher rate of 3.0 C after 100 cycles. The area-specific impedance of a cell fabricated with VGCF/PCLFP composite is lower than that made of only pyrolytic carbon-coated LiFePO4, reported here for the purpose of comparison. In comparison to the electrode made of carbon black/LiFePO4 composite (10 wt% carbon), the charge transfer resistance of the VGCF/PCLFP composite electrode decreases from 165 to 91 Ω. This technique presents an attractive way to produce high-performance LiFePO4 cathode material through a low-cost high-efficiency process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Whittingham MS (2004) Chem Rev 104:4271

    Article  CAS  Google Scholar 

  2. Li H, Wang ZX, Chen LQ, Huang XJ (2009) Adv Mater 21:4593

    Article  Google Scholar 

  3. Huang H, Yin SC, Nazarz LF (2001) Electrochem Solid State Lett 4:A170

    Article  CAS  Google Scholar 

  4. Padhi AK, Najundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  5. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) J Electrochem Soc 144:1609

    Article  CAS  Google Scholar 

  6. Padhi AK, Nanjundaswamy KS, Masquelier C, Goodenough JB (1997) J Electrochem Soc 144:2581

    Article  CAS  Google Scholar 

  7. Chung SY, Bloking JT, Chiang YM (2002) Nat Mater 1:123

    Article  CAS  Google Scholar 

  8. Molenda J, Stoklosa A, Bak T (1989) Solid State Ionics 36:53

    Article  CAS  Google Scholar 

  9. Guan J, Liu M (1998) Solid State Ionics 110:21

    Article  CAS  Google Scholar 

  10. Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) In: 196th meeting of the electrochemical society, Honolulu, HI, p 127

  11. Belharouak I, Johnson C, Amine K (2005) Electrochem Commun 7:983

    Article  CAS  Google Scholar 

  12. Croce F, Epifanio AD, Hassoun J, Deptula A, Olczac T, Scrosatia B (2002) Electrochem Solid State Lett 5:A47

    Article  CAS  Google Scholar 

  13. Chen ZH, Dahna JR (2002) J Electrochem Soc 149:A1184

    Article  CAS  Google Scholar 

  14. Zhao B, Jiang Y, Zhang HJ, Tao HH, Zhong MY, Jiao Z (2009) J Power Sources 189:462

    Article  CAS  Google Scholar 

  15. Marcinek ML, Wilcox JW, Doeff MM, Kosteckia RM (2009) J Electrochem Soc 156:A48

    Article  CAS  Google Scholar 

  16. Nakamura T, Shima Y, Matsui H, Yamada Y, Hashimoto S, Miyauchi H, Koshiba N (2010) J Electrochem Soc 157:A544

    Article  CAS  Google Scholar 

  17. Tatsumi K, Zaghib K, Sawada Y, Abe H, Ohsaki T (1995) J Electrochem Soc 142:1090

    Article  CAS  Google Scholar 

  18. Endo M, Nishimura Y, Takahashis T, Takeuchi K, Dresselhaus MS (1996) J Phys Chem Solids 57:725

    Article  CAS  Google Scholar 

  19. Endo M, Kim YA, Hayashi T, Nishimurab K, Matusitaa T, Miyashitaa K, Dresselhaus MS (2001) Carbon 39:1287

    Article  CAS  Google Scholar 

  20. Utsunomiya H, Nakajima T, Ohzawa Y, Mazej Z, Zemvab B, Endo M (2010) J Power Sources 195:6805

    Article  CAS  Google Scholar 

  21. Fraczek-Szczypta A, Bogun M, Blazewicz S (2009) J Mater Sci 44:4721. doi:https://doi.org/10.1007/s10853-009-3730-2

    Article  CAS  Google Scholar 

  22. Kercher AK, Kiggans JO, Dudney NJ (2010) J Electrochem Soc 157:A1323

    Article  CAS  Google Scholar 

  23. Speck JS, Endo M, Dresselhaus MS (1989) J Cryst Growth 94:834

    Article  CAS  Google Scholar 

  24. Tibbetts GG (1983) Appl Phys Lett 42:666

    Article  CAS  Google Scholar 

  25. Chen CC, Liu MH, Chen JM (2004) In: 206th meeting of the electrochemical society, Honolulu, HI, p 413

  26. Lin Q, Harb JN (2004) J Electrochem Soc 151:A1115

    Article  CAS  Google Scholar 

  27. Sheem K, Lee YH, Lim HS (2006) J Power Sources 158:1425

    Article  CAS  Google Scholar 

  28. Li XL, Kang FY, Shen WC (2006) Carbon 44:1334

    Article  CAS  Google Scholar 

  29. Li XL, Kang FY, Bai XD, Shen WC (2007) Electrochem Commun 9:663

    Article  CAS  Google Scholar 

  30. Sotowa C, Origi G, Takeuchi M, Nishimura Y, Takeuchi K, Jang IY, Kim YJ, Hayashi T, Kim YA, Endo M, Dresselhaus MS (2008) ChemSusChem 1:911

    Article  CAS  Google Scholar 

  31. Jin B, Jin EM, Park KH, Gu HB (2008) Electrochem Commun 10:1537

    Article  CAS  Google Scholar 

  32. Burba CM, Frech R (2004) J Electrochem Soc 151:A1032

    Article  CAS  Google Scholar 

  33. Wu XL, Jiang LY, Cao FF, Guo YG, Wan LJ (2009) Adv Mater 21:2710

    Article  CAS  Google Scholar 

  34. Zou JZ, Zeng XR, Xiong XB, Tang HL, Li L, Liu Q (2007) Carbon 45:828

    Article  CAS  Google Scholar 

  35. Ajayan PM, Nugent JM, Siegel RW, Wei B, Kohler-Redlich P (2000) Nature 404:243

    Article  CAS  Google Scholar 

  36. Dominko R, Gaberscek M, Drofenik J, Bele M, Pejovnik S, Jamnik J (2003) J Power Sources 119–121:770

    Article  Google Scholar 

  37. Zhou YK, He BL, Zhou WJ, Li HL (2004) J Electrochem Soc 151:A1052

    Article  CAS  Google Scholar 

  38. Lee CY, Tsai HM, Chuang HJ, Li SY, Lin P, Tseng TY (2005) J Electrochem Soc 152:A716

    Article  CAS  Google Scholar 

  39. Choia YM, Pyun SI (1997) Solid State Ionics 99:173

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Two Hundred Plan for Talent Station of Shenzhen (Shenfu [2008] No.182), the Science and Technology R&D Program of Shenzhen (CXB201005240010A), the Science and Technology R&D Program of Shenzhen (ZD200904290044A), the Science and Technology Project of Shenzhen (JC200903130266A), and the fund of Shenzhen Key Laboratory of Special Functional Materials (T201005). We also thank Professor Wenjun Liu for his technical guidance with electrochemical impedance spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xierong Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, F., Zeng, X., Zou, J. et al. Synthesis and electrochemical analyses of vapor-grown carbon fiber/pyrolytic carbon-coated LiFePO4 composite. J Mater Sci 46, 5896–5902 (2011). https://doi.org/10.1007/s10853-011-5675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5675-5

Keywords

Navigation