Skip to main content
Log in

Influence of humidity on the scratch behavior of polystyrene–acrylonitrile random copolymers

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of exposure to a humid environment on the scratch behavior of a set of model polystyrene–acrylonitrile (SAN) random copolymers was investigated over a period of 10 days. Linear increasing load scratch tests were performed according to ASTM D7027/ISO 19252. The critical loads for the onset of key scratch deformation mechanisms like periodic micro-cracking, plowing, and scratch visibility were used as metrics for evaluating scratch resistance. The scratching coefficient of friction was evaluated, as well. It was found that, in general, the scratch resistance decreases during the first few days of moisture exposure, but then experiences a degree of recovery upon saturation. It is proposed that the initially absorbed moisture causes plasticization, making the surface weaker until saturation where the water molecules gather together on the surface to impart a degree of lubrication and consequently improve the scratch resistance. Implications of moisture absorption on the scratch behavior of polymers will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Timoteo GAV, Fechine GJM, Rabello MS (2008) Polym Eng Sci 48:2003

    Article  CAS  Google Scholar 

  2. Sousa AR, Amorim KLE, Medeiros ES, Melo TJA, Rabello MS (2006) Polym Degrad Stab 91:1504

    Article  CAS  Google Scholar 

  3. Nakamura H, Nakamura T, Noguchi T, Imagawa K (2006) Polym Degrad Stab 91:740

    Article  CAS  Google Scholar 

  4. Jiang H, Browning R, Liu P, Chang TA, Sue H-J (2010) J Coat Technol 8:255

    Article  Google Scholar 

  5. Rabek JF (1995) Polymer photodegradation: mechanisms and experimental methods. Chapman and Hall, London

    Book  Google Scholar 

  6. Brostow W, Deborde J-L, Jaklewicz M, Olszynski P (2003) J Mater Ed 25:119

    CAS  Google Scholar 

  7. Brostow W, Kovacevic V, Vrsaljko D, Whitworth J (2010) J Mater Ed 32:273

    Google Scholar 

  8. Myshkin NK, Petrokovets MI, Kovalev AV (2005) Tribol Int 38:910

    Article  CAS  Google Scholar 

  9. Hainsworth SV, Kilgallon PJ (2008) Prog Org Coat 62:21

    Article  CAS  Google Scholar 

  10. Starczewski L, Szumniak J (1998) Surf Coat Technol 100:33

    Article  Google Scholar 

  11. van der Heide E, Lossie CM, van Bommel KJC, Reinders SAF, Lenting HBM (2010) Tribol Trans 53:842

    Article  Google Scholar 

  12. Cinquin J, Abjean P (1993) Int SAMPE Symp Exhib 1539

  13. Biney PO, Zhong Y, Zhou J (1998) Int SAMPE Symp Exhib 43:120

    CAS  Google Scholar 

  14. Wilenski M (1997) PhD Thesis, Michigan State University

  15. Li Y, Miranda J, Sue H-J (2001) Polymer 42:7791

    Article  CAS  Google Scholar 

  16. Li Y, Miranda J, Sue H-J (2002) Polym Eng Sci 42:375

    Article  CAS  Google Scholar 

  17. Lin YC, Chen X (2005) Polymer 46:11994

    Article  CAS  Google Scholar 

  18. Bair HE, Johnson GE, Merriweather R (1978) J Appl Phys 49:4976

    Article  CAS  Google Scholar 

  19. Smith WM (1958) Vinyl resins. Reinhold Publishing Corporation, New York

    Book  Google Scholar 

  20. Browning R, Minkwitz R, Charoensirisomboon P, Sue H-J (2010) Polym Eng and Sci, DOI#22003

  21. Adão MHVC, Saramago BJV, Fernandes AC (1999) J Colloid Interface Sci 217:94

    Article  Google Scholar 

  22. ASTM D7027 (2005) ASTM International

  23. ISO 19252 (2008) ISO International

  24. Jiang H, Browning R, Fincher J, Gasbarro A, Jones S, Sue H-J (2008) Appl Surf Sci 254:4494

    Article  CAS  Google Scholar 

  25. Jiang H, Whitcomb J, Sue H-J (2009) SPE TPO Conf, Sterling Heights, Michigan

  26. Shen CH, Springer GS (1976) J Comp Mater 10:2

    Article  Google Scholar 

  27. Hansen CM (1980) Polym Eng Sci 20:252

    Article  CAS  Google Scholar 

  28. Bruder F, Haese W (1999) Jpn J Appl Phys 38:1709

    Article  CAS  Google Scholar 

  29. Barrie JA, Platt B (1963) Polymer 4:303

    Article  CAS  Google Scholar 

  30. Woo M, Piggott MR (1987) J Compos Technol Res 9:101

    Article  CAS  Google Scholar 

  31. Karad SK, Jones FR (2005) Polymer 46:2732

    Article  CAS  Google Scholar 

  32. Mitsui T, Rose MK, Fomin E, Ogletree DF, Salmeron M (2002) Phys Rev Lett 297:1850

    CAS  Google Scholar 

  33. Jiang H, Browning R, Sue H-J (2009) Polymer 50:4056

    Article  CAS  Google Scholar 

  34. Browning R, Lim GT, Moyse A, Sun LY, Sue H-J (2006) Polym Eng Sci 46:601

    Article  CAS  Google Scholar 

  35. Jiang H, Lim G-T, Reddy JN, Whitcomb JD, Sue H-J (2007) J Polym Sci B: Polym Phys 45:1435

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank both BASF SE and the Texas A&M Scratch Behavior of Polymers Consortium for the generous financial support of this work. Surface Machine Systems and the Polymer Technology Center are also given thanks for the use of their facilities and equipment. Thanks are given to Ehsan Moghbelli for the measurement of contact angles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Jue Sue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Browning, R., Minkwitz, R., Charoensirisomboon, P. et al. Influence of humidity on the scratch behavior of polystyrene–acrylonitrile random copolymers. J Mater Sci 46, 5790–5797 (2011). https://doi.org/10.1007/s10853-011-5534-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5534-4

Keywords

Navigation