Skip to main content
Log in

Phase diagram and electric properties of the (Mn, K)-modified Bi0.5Na0.5TiO3–BaTiO3 lead-free ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the phase diagram and electric properties were demonstrated for a (Mn, K)-modified Bi0.5Na0.5TiO3 (BNT)-based solid solution. (0.935−x) Bi0.5Na0.5TiO3xBi0.5K0.5TiO3−0.065BaTiO3 with 0.5% mol Mn doping was prepared by a conventional solid-state reaction method. A morphotropic phase boundary (MPB) formed between the ferroelectric rhombohedral and tetragonal phases around x of 0.04 with the MPB tolerance factor t of 0.984–0.986. The temperature and composition dependence of the dielectric, piezoelectric, ferroelectric properties along with the strain characteristics were investigated in detail and a phase diagram was presented. Around the MPB region, the maximum values of piezoelectric constant \( d_{33}^{*} \) of 290 pC/N, d 33 of 155 pC/N, dielectric constant \( \varepsilon_{33}^{T} /\varepsilon_{0} \) of 1059 and low dielectric loss tangent tan δ of 0.017 were obtained. In addition, the authors also suggest that the solid solution with composition x of 0.24, exhibiting both high-depolarization temperature T d of 182 °C, \( d_{33}^{*} \) of 156 pC/N, d 33 of 130 pC/N, will be favorable for high-temperature actuator and sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic press, London

    Google Scholar 

  2. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003, Official Journal of the European Union 2003, p L37/19

  3. Maeder MD, Damjanovic D, Setter N (2004) J Electroceram 13:385

    Article  CAS  Google Scholar 

  4. Rödel J, Jo W, Seifert TPK, Anton EM, Granzow T, Damjanovic D (2009) J Am Ceram Soc 92:1153

    Article  Google Scholar 

  5. Eerd BW, Damjanovic D, Klein N, Setter N, Trodahl J (2010) Phys Rev B 82:104112

    Article  Google Scholar 

  6. Hollenstein E, Davis M, Damjanovic D, Setter N (2005) Appl Phys Lett 87:182905

    Article  Google Scholar 

  7. Trodahl HJ, Klein N, Damjanovic D, Setter N, Ludbrook B, Rytz D, Kuball M (2008) Appl Phys Lett 93:262901

    Article  Google Scholar 

  8. Jones GO, Thomas PA (2002) Acta Crystallogr Sect B Struct Sci 58:168

    Article  CAS  Google Scholar 

  9. Davis M, Klein N, Damjanovic D, Setter N, Gross A, Wesemann V, Vernay S, Rytz D (2007) Appl Phys Lett 90:062904

    Article  Google Scholar 

  10. Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) Sov Phys-Solid State Engl Transl 2:2651

    Google Scholar 

  11. Daniels JE, Jo W, Rödel J, Jones JL (2009) Appl Phys Lett 95:032904

    Article  Google Scholar 

  12. Hiruma Y, Yoshii K, Nagata H, Takenaka T (2008) J Appl Phys 103:084121

    Article  Google Scholar 

  13. Richard J, Pettry G, Said S, Marchet P, Mercurio JP (2004) J Eur Ceram Soc 24:1165

    Article  Google Scholar 

  14. Liu WF, Ren XB (2009) Phys Rev Lett 103:257602

    Article  Google Scholar 

  15. Lin DM, Zheng Q, Xu C, Kwok KW (2008) Appl Phys A Mater Sci Process 93:549

    Article  CAS  Google Scholar 

  16. Shieh J, Wu KC, Chen CS (2007) Acta Mater 55:3081

    Article  CAS  Google Scholar 

  17. Priya S, Kim HW, Ryu J, Zhang SJ, Shrout TR, Uchino K (2002) J Appl Phys 92:3923

    Article  CAS  Google Scholar 

  18. Zhang QH, Zhang YY, Wang FF, Wang YJ et al (2009) Appl Phys Lett 95:102904

    Article  Google Scholar 

  19. Hiruma Y, Nagata H, Takenaka T (2009) Appl Phys Lett 95:052903

    Article  Google Scholar 

  20. Shannon RD (1976) Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallogr A32:751

    Article  CAS  Google Scholar 

  21. Smolenskii GA (1970) J Phys Soc Jpn 28:26

    Google Scholar 

  22. Shrout TR, Zhang SJ (2007) J Electroceram 19:113

    Article  Google Scholar 

  23. Wang FF, Luo LH et al (2007) Appl Phys Lett 90:212903

    Article  Google Scholar 

  24. Wang XX, Choy SH, Tang XG, Chan HLW (2005) J Appl Phys 97:104101

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the Science and Technology Commission of Shanghai Municipality (Grant no. 10ZR1422300 and 09520501000), the Innovation Program of Shanghai Municipal Education Commission (Grant no. 11YZ82, 11YZ83, and 11ZZ117), Shanghai Normal University Program (SK201026 and PL929), National Natural Science Foundation of China (Grant no. 60807036), and Condensed Physics of Shanghai Normal University (Grant no. DZL712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M., Wang, F., Wang, T. et al. Phase diagram and electric properties of the (Mn, K)-modified Bi0.5Na0.5TiO3–BaTiO3 lead-free ceramics. J Mater Sci 46, 4675–4682 (2011). https://doi.org/10.1007/s10853-011-5374-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5374-2

Keywords

Navigation