Skip to main content
Log in

Structure, electrical properties and temperature characteristics of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

(1−xy)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBi0.5Li0.5TiO3 lead-free piezoelectric ceramics have been prepared by an ordinary sintering technique, and their structure, electrical properties, and temperature characteristics have been studied systematically. The ceramics can be well-sintered at 1050–1150 °C. The increase in K+ concentration decreases the grain-growth rate and promotes the formation of grains with a cubic shape, while the addition of Li+ decreases greatly the sintering temperature and assists in the densification of BNT-based ceramics. The results of XRD diffraction show that K+ and Li+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a pure perovskite structure. As x increases from 0.05 to 0.50, the ceramics transform gradually from rhombohedral phase to tetragonal phase and consequently a morphotropic phase boundary (MPB) is formed at 0.15≤x≤0.25. The concentration y of Li+ has no obvious influence on the crystal structure of the ceramics. Compared with pure Bi0.5Na0.5TiO3, the partial substitution of K+ and Li+ for Na+ lowers greatly the coercive field E c and increases the remanent polarization P r of the ceramics. Because of the MPB, lower E c and large P r, the piezoelectricity of the ceramics is improved significantly. For the ceramics with the compositions near the MPB (x=0.15–0.25 and y=0.05–0.10), the piezoelectric properties become optimum: piezoelectric coefficient d 33=147–231 pC/N and planar electromechanical coupling factor k P=20.2–41.0%. In addition, the ceramics exhibit relaxor characteristic, which probably results from the cation disordering in the 12-fold coordination sites. The depolarization temperature T d shows a strong dependence on the concentration x of K+ and reaches the lowest values at the MPB. The temperature dependences of the ferroelectric and dielectric properties at high temperatures may imply that the ceramics may contain both the polar and non-polar regions at temperatures above T d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State 2, 2651 (1961)

    Google Scholar 

  2. T. Takennaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991)

    Article  ADS  Google Scholar 

  3. A. Herabut, A. Safari, J. Am. Ceram. Soc. 80(11), 2954 (1997)

    Article  Google Scholar 

  4. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38(9B), 5564 (1999)

    Article  ADS  Google Scholar 

  5. K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45(5B), 4493 (2006)

    Article  ADS  Google Scholar 

  6. S. Zhao, G. Li, A. Ding, T. Wang, Q.R. Yin, J. Phys. D: Appl. Phys. 39, 2277 (2006)

    Article  ADS  Google Scholar 

  7. Z. Yang, B. Liu, L. Wei, Y. Hou, Mater. Res. Bull. 43, 81 (2008)

    Article  Google Scholar 

  8. B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, J. Eur. Ceram. Soc. 22, 2115 (2002)

    Article  Google Scholar 

  9. G. Fan, W. Lu, X. Wang, F. Liang, Appl. Phys. Lett. 91, 202908 (2007)

    Article  ADS  Google Scholar 

  10. Y.M. Li, W. Chen, J. Zhou, Q. Xu, H.J. Sun, R.X. Xu, Mater. Sci. Eng. B 112, 5 (2004)

    Article  Google Scholar 

  11. K. Pengpat, S. Hauphimol, S. Eitssayeam, U. Intutha, G. Rujijangul, T. Tunkasiri, J. Electroceram. 16, 301 (2006)

    Article  Google Scholar 

  12. D. Lin, D. Xiao, J. Zhu, P. Yu, J. Eur. Ceram. Soc. 26, 3247 (2006)

    Article  Google Scholar 

  13. X.X. Wang, X.G. Tang, H.L.W. Chan, Appl. Phys. Lett. 85, 91 (2004)

    Article  ADS  Google Scholar 

  14. J. Shieh, K.C. Wu, C.S. Chen, Acta Mater. 55(9), 3081 (2007)

    Article  ADS  Google Scholar 

  15. S. Zhang, T.R. Shrout, H. Nagata, Y. Hiruma, T. Takenaka, IEEE Trans. Ultrason., Ferroelect., Freq. Contr. 54(5), 910 (2007)

    Article  Google Scholar 

  16. Y. Makiuchi, R. Aoyagi, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 44, 4350 (2005)

    Article  ADS  Google Scholar 

  17. Y. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, S. Fang, Mater. Chem. Phys. 94, 328 (2005)

    Article  Google Scholar 

  18. X.X. Wang, S.H. Choy, X.G. Tang, H.L.W. Chan, J. Appl. Phys. 97, 104101 (2005)

    Article  ADS  Google Scholar 

  19. D. Lin, K.W. Kwok, H.L.W. Chan, J. Phys. D: Appl. Phys. 40, 5354 (2007)

    ADS  Google Scholar 

  20. Y.Q. Yao, T.Y. Tseng, C.C. Chou, H.H.D. Chen, J. Appl. Phys. 102, 094102 (2007)

    Article  ADS  Google Scholar 

  21. D. Lin, D. Xiao, J. Zhu, P. Yu, Appl. Phys. Lett. 88, 062901 (2006)

    Article  ADS  Google Scholar 

  22. E. Fukuchi, T. Kimura, T. Tani, Y. Saito, J. Am. Ceram. Soc. 85(6), 1461 (2002)

    Article  Google Scholar 

  23. Y. Hiruma, R. Aoyagi, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. A 44(7), 5040 (2005)

    Article  ADS  Google Scholar 

  24. C. Karthik, N. Ravishankar, K.B.R. Varma, Appl. Phys. Lett. 89, 042905 (2006)

    Article  ADS  Google Scholar 

  25. N. Setter, L.E. Cross, J. Appl. Phys. 51, 4356 (1980)

    Article  ADS  Google Scholar 

  26. J.K. Lee, J.Y. Yi, K.S. Hong, J. Sol. Stat. Chem. 177, 2850 (2004)

    Article  ADS  Google Scholar 

  27. J. Suchanicz, J. Kusz, H. Böhm, H. Duda, J.P. Mercurio, J. Eur. Ceram. Soc. 22, 1559 (2003)

    Article  Google Scholar 

  28. J. Suchanicz, J. Kusz, H. Böhm, Mater. Sci. Eng. B 97, 154 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunmin Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, D., Zheng, Q., Xu, C. et al. Structure, electrical properties and temperature characteristics of Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3–Bi0.5Li0.5TiO3 lead-free piezoelectric ceramics. Appl. Phys. A 93, 549–558 (2008). https://doi.org/10.1007/s00339-008-4667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4667-z

PACS

Navigation