Skip to main content
Log in

Effects of Sr-modification, iron-based intermetallics and aging treatment on the impact toughness of 356 Al–Si–Mg alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Impact toughness as a property has been acquiring increased importance in recent years, since data regarding this property can provide a means for assessing alloy ductility under high rates of deformation. The main objective of this study is to investigate the effects of Sr-modification, Fe-based intermetallic phases and aging conditions on the impact toughness of widely used 356 alloys. The total absorbed energy was measured using a computer-aided instrumented Instron Charpy impact testing machine. Increasing the level of iron additions decreases the impact energy values of 356 alloys to a noticeable degree (~35–57%). The addition of 0.1 wt% Mn to non-modified 356 alloys seems to have no observable effect on the impact energy, while increasing the Mn addition to 0.4 wt% produces a slight improvement in the impact energy values for non-modified and Sr-modified 356 alloys compared to that of those containing only iron under the same conditions. The application of solution heat treatment in combination with Sr-modification was found to significantly improve the impact energy of as-cast 356 alloys, particularly at low iron additions. Artificial aging of non-modified and Sr-modified 356 alloys at 180 °C diminishes the impact energy values with an increase in the aging time up to 8 h compared to those obtained under the solution heat-treated conditions. On the other hand, aging at 220 °C for 12 h increases the impact energy values of Sr-modified 356 alloy containing 0.12 wt% Fe and combined 0.2 wt% Fe–0.1 wt% Mn to about 20 and 18 J, respectively. The fracture behavior of non-modified 356 alloys containing 0.12 wt% Fe is mainly controlled by the acicular eutectic Si particles whereas β-iron platelets act as crack initiation sites and provide further path for final crack propagation in non-modified 356 alloys containing 0.9 wt% Fe. The β-iron platelets and π-iron phase particles contribute largely to crack initiation and propagation in the Sr-modified 356 alloys containing 0.9 wt% Fe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Samuel AM, Samuel FH, Doty HW (1996) J Mater Sci 31:5529. doi:10.1007/BF01159327

    Article  CAS  Google Scholar 

  2. Bäckerud L, Chai G, Tamminen J (1990) Solidification characteristics of aluminum alloys. Vol. 2: foundry alloys. AFS/Skanaluminium, Des Plaines, IL, p 71

    Google Scholar 

  3. Taylor JA Cooperative report, research center for cast metals manufacturing (CAST). University of Queensland, Brisbane, Australia, p 1

  4. Paray F, Gruzleski JE (1994) Cast Met 7(1):29

    CAS  Google Scholar 

  5. Martin JW, Doherty RD (1997) Stability of microstructure in metallic systems. Cambridge University Press, Cambridge, p 239

    Google Scholar 

  6. El Sebaie O, Samuel FH, Samuel AM, Doty HW (2008) Mater Sci Eng A 480(1–2):342

    Google Scholar 

  7. Taylor JA, StJohn DH, Barresi J, Couper MJ (2000) Mater Sci Forum 331–337:277

    Article  Google Scholar 

  8. Taylor A, StJohn DH, Zheng LH, Barresi J, Couper MJ (2001) Alum Trans 4–5:111

    Google Scholar 

  9. Wang QG, Davidson CJ (2001) J Mater Sci 36:739. doi:10.1023/A:1004801327556

    Article  CAS  Google Scholar 

  10. Ma Z, Samuel AM, Samuel FH, Doty HW, Valtierra S (2002) AFS Trans Paper 03–101:1

    Google Scholar 

  11. Sigworth G, Apelian D, Shivkumar S (1989) AFS Trans 97:811

    Google Scholar 

  12. Shivkumar S, Wang L, Keller C (1994) J Mater Eng Perform 3:83

    Article  CAS  Google Scholar 

  13. Merlin M, Timelli G, Bonollo F, Garagnani GL (2009) J Mater Process Technol 209:1060

    Article  CAS  Google Scholar 

  14. Gruzleski JE, Closset BM (1990) The treatment of liquid aluminum–silicon alloys. American Foundrymen’s Society, Des Plaines, IL, p 74

    Google Scholar 

  15. Zhang DL, Zheng LH, StJohn DH (2002) J Light Met 2:7

    Article  CAS  Google Scholar 

  16. Dieter GE (1986) Mechanical metallurgy. McGraw Hill, UK, p 241

    Google Scholar 

  17. Smallman RE, Ngan AHW (2007) Physical metallurgy and advanced materials. Butterworth Heinemann, Boston, p 385

    Book  Google Scholar 

  18. Nakayama Y, Ninomiya K, Ohnishi N (1998) J Jap Inst Light Met 48(7):340

    Article  CAS  Google Scholar 

  19. Tsukuda M, Koike S, Harada M (1978) J Jap Inst Light Met 28(1):8

    CAS  Google Scholar 

  20. Sreeja Kumari SS, Pillai RM, Pai BC (2007) Mater Sci Eng A 460–461:561

    Google Scholar 

  21. Sreeja Kumari SS, Pillai RM, Pai BC (2002) Indian Found J 48(1):27

    CAS  Google Scholar 

  22. Awano Y, Shimizu Y (1990) AFS Trans 98:889

    CAS  Google Scholar 

  23. Murali S, Raman KS, Murthy KSS (1994) Int J Cast Met Res 6(4):189

    Google Scholar 

  24. Wang QG, Cáceres CH (1998) Mater Sci Eng A A241:72

    CAS  Google Scholar 

  25. Brooks CR, Choudhury A (1993) Metallurgical failure analysis. McGraw-Hill Inc., New York

    Google Scholar 

  26. Ran G, Zhou JE, Wang QG (2008) J Mater Process Technol 207:46

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial and in-kind support received from the Natural Sciences and Engineering Research Council of Canada (NSERC), General Motors Power Train Group (USA), and Corporativo Nemak (Mexico), is gratefully acknowledged. The authors would also like to thank Mr. Lang Shi of the Microanalysis Laboratory, Earth and Planetary Science, McGill University for carrying out the EPMA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Samuel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsebaie, O., Samuel, A.M. & Samuel, F.H. Effects of Sr-modification, iron-based intermetallics and aging treatment on the impact toughness of 356 Al–Si–Mg alloy. J Mater Sci 46, 3027–3045 (2011). https://doi.org/10.1007/s10853-010-5181-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5181-1

Keywords

Navigation