Skip to main content
Log in

Synthesis and properties of glasses in the K2O–SiO2–Bi2O3–TiO2 system and bismuth titanate (Bi4Ti3O12) nano glass–ceramics thereof

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Glasses were prepared by the melt-quench technique in the K2O–SiO2–Bi2O3–TiO2 (KSBT) system and crystallized bismuth titanate, BiT (Bi4Ti3O12) phase in it by controlled heat-treatment at various temperature and duration. Different physical, thermal, optical, and third-order susceptibility (χ3) of the glasses were evaluated and correlated with their composition. Systematic increase in refractive index (n) and χ3 with increase in BiT content is attributed to the combined effects of high polarization and ionic refraction of bismuth and titanium ions. Microstructural evaluation by FESEM shows the formation of polycrystalline spherical particles of 70–90 nm along with nano-rods of average diameter of 85–90 nm after prolonged heat treatment. A minor increase in dielectric constants (εr) has been observed with increase in polarizable components of BiT in the glasses, whereas a sharp increase in εr in glass–ceramics is found to be caused by the formation of non-centrosymmetric and ferroelectric BiT nanocrystals in the glass matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Borrelli NF, Herczog A, Maurer RD (1965) Appl Phys Lett 7:117

    Article  CAS  Google Scholar 

  2. Borrelli NF (1967) J Appl Phys 38(11):4243

    Article  CAS  Google Scholar 

  3. Jain H (2004) Ferroelectrics 306:111

    Article  CAS  Google Scholar 

  4. Corker DL, Zhang Q, Whatmore RW, Perrin C (2002) J Eur Ceram Soc 22:383

    Article  CAS  Google Scholar 

  5. Villegas M, Jardiel T, Caballero AC (2009) J Eur Ceram Soc 29:737

    Article  CAS  Google Scholar 

  6. Hosoka M, Nogi K, Naito M, Yokoyama Y (2007) Nanoparticle technology handbook. Elsevier, Amsterdam

    Google Scholar 

  7. Aurivillius B (1949) Ark Kemi 1:499

    CAS  Google Scholar 

  8. Newnham RE, Wolfe RW, Dorrian JF (1971) Mater Res Bull 6:1029

    Article  CAS  Google Scholar 

  9. Villegas M, Jardiel T, Caballero AC, Fernández JF (2004) J Electroceram 13:543

    Article  CAS  Google Scholar 

  10. Kojima S, Hushur A, Jiang F, Hamazaki S, Takashige M, Jang MS, Shimada S (2001) J Non-Cryst Solids 293–295:250

    Article  Google Scholar 

  11. Fouskova A, Cross LE (1970) J Appl Phys 41:2834

    Article  CAS  Google Scholar 

  12. Villegas M, Caballero AC, Moure C, Durán P, Fernández JF (1999) J Am Ceram Soc 82(9):2411

    Article  CAS  Google Scholar 

  13. Villegas M, Caballero AC, Fernández JF (2002) Ferroelectrics 267(1):165

    Article  CAS  Google Scholar 

  14. Hirayama C, Subbarao EC (1962) Phys Chem 3:111

    CAS  Google Scholar 

  15. Murugan GS, Subbanna GN, Varma KBR (1999) J Mater Sci Lett 18:1687

    Article  CAS  Google Scholar 

  16. Vernacotala DE, Chatlani S, Shelby JE (2000) Applications of ferroelectrics 2000 proceedings of the 12th IEEE international symposium on applications of ferroelectric, Honolulu, Hawaii, USA

  17. Borrelli NF, Layton MM (1968) Symposium on applications of ferroelectricity electrooptic properties of transparent ferroelectric glass-ceramic systems. Catholic University of America, Washington, DC

  18. Bell AJ (2008) J Eur Ceram Soc 28:1307

    CAS  Google Scholar 

  19. Pengpat K, Holland D (2004) J Eur Ceram Soc 24:2951

    Article  CAS  Google Scholar 

  20. Graca MPF, Ferreira da Silva MG, Valente MA (2007) J Mater Sci 42:2543. doi:10.1007/s10853-006-1208-z

    Article  CAS  Google Scholar 

  21. Graca MPF, Valente MA, Ferreira da Silva MG (2006) J Mater Sci 41:1137. doi:10.1007/s10853-005-3652-6

    Article  CAS  Google Scholar 

  22. Shankar MV, Varma KBR (1998) J Non-Cryst Solids 226:145

    Article  CAS  Google Scholar 

  23. Pengpat K, Holland D (2003) J Eur Ceram Soc 23:1599

    Article  CAS  Google Scholar 

  24. Ruiz-Valdés JJ, Gorokhovsky AV, Escalante-García JI, Mendoza-Suárez G (2004) J Eur Ceram Soc 24:1505

    Article  Google Scholar 

  25. Bengisu M, Brow RK, Wittenauer A (2008) J Mater Sci 43:3531. doi:10.1007/s10853-008-2541-1

    Article  CAS  Google Scholar 

  26. Shankar MV, Varma KBR (1998) Mater Res Bull 33(12):1769

    Article  CAS  Google Scholar 

  27. Gerth K, Rüssel C (1997) J Non-Cryst Solids 221:10

    Article  CAS  Google Scholar 

  28. Komleva GP, Dmitrieva VI (1969) Glass Ceram 26(11):657

    Article  Google Scholar 

  29. Russel C, Freude E (1989) Phys Chem Glass 30:62

    Google Scholar 

  30. Lorentz HA (1880) Ann Phys 9:641

    Google Scholar 

  31. Lorenz R (1880) Ann Phys 11:70

    Google Scholar 

  32. Vogel EM, Weber MJ, Krol DM (1991) Phys Chem Glass 32:231

    CAS  Google Scholar 

  33. Boling NL, Glass AJ, Owyoung A (1978) IEEE J Quantum Electron 14:601

    Article  CAS  Google Scholar 

  34. Adair R, Chase LL, Payne SA (1987) J Opt Soc Am B 4(6):875

    Article  CAS  Google Scholar 

  35. Hall DW, Newhouse MA, Borreli NF, Dumbaugh WH, Weidman DL (1989) Appl Phys Lett 54:1293

    Article  CAS  Google Scholar 

  36. Thamozaeu I, Etehepare J, Grillon G, Migus A (1985) Optic Lett 10:223

    Article  Google Scholar 

  37. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesley Publishing Co., London

    Google Scholar 

  38. Holand W, Beal G (2002) Glass-ceramic technology. The American Ceramic Society, Columbus

    Google Scholar 

  39. Jardiel T, de la Rubia MA, Peiteado M (2008) J Am Ceram Soc 91(4):1083

    Article  CAS  Google Scholar 

  40. Ardelean I, Cora S, Rusu D (2008) Physica B 403:3682

    Article  CAS  Google Scholar 

  41. Moulson AJ, Herbert JM (1990) Electroceramics material, properties applications. Chapman & Hall, London

    Google Scholar 

  42. Blech IA (1986) In: Fink DG, Christiansen D (eds) Properties of materials electronics engineering handbook, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  43. Tarafder A, Annapurna K, Chaliha RS, Tiwari VS, Gupta PK, Karmakar B (2009) J Am Ceram Soc 92:1934

    Article  CAS  Google Scholar 

  44. Watanabe H, Kimura T, Yamaguch T (1991) J Am Ceram Soc 74:139

    Article  CAS  Google Scholar 

  45. Volf MB (1984) Chemical approach to glass. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgements

The authors thank Director of the Institute for his keen interest and kind permission to publish this paper. Electron Microscope and X-Ray Divisions of the Institute are also thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basudeb Karmakar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molla, A.R., Tarafder, A. & Karmakar, B. Synthesis and properties of glasses in the K2O–SiO2–Bi2O3–TiO2 system and bismuth titanate (Bi4Ti3O12) nano glass–ceramics thereof. J Mater Sci 46, 2967–2976 (2011). https://doi.org/10.1007/s10853-010-5173-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5173-1

Keywords

Navigation