Skip to main content
Log in

Mechanochemical synthesis and characterization of xIn2O3·(1 − x)α-Fe2O3 nanostructure system

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Indium oxide-doped hematite xIn2O3·(1 − x)α-Fe2O3 (x = 0.1–0.7) nanostructure system was synthesized using mechanochemical activation by ball milling and characterized by XRD, simultaneous DSC–TGA, and UV/Vis/NIR. The microstructure and thermal behavior of as obtained system were dependent on the starting In2O3 molar concentration x and ball milling time. XRD patterns yielded the dependence of lattice parameters and grain size as a function of ball milling time. After 12 h of ball milling, the completion of In3+ substitution of Fe3+ in hematite lattice occurs for x = 0.1, indicating that the solid solubility of In2O3 in hematite lattice is extended. For x = 0.3, 0.5, and 0.7, the substitutions between In3+ and Fe3+ into hematite and In2O3 lattice occur simultaneously. The lattice parameters a and c of hematite and lattice parameter a of indium oxide vary as a function of ball milling time. The changes of these parameters are due to ion substitutions between In3+ and Fe3+ and the decrease in the grain sizes. Ball milling has a strong effect on the thermal behavior and band gap energy of the as-obtained system. The hematite decomposition is enhanced due to the smaller hematite grain size. The crystallization of hematite and In2O3 was suppressed, with drops of enthalpy values due to the stronger solid–solid interactions after ball milling, which caused gradual In3+–Fe3+ substitution in hematite/In2O3 lattices. The band gap for hematite shifts to higher energy value, while that of indium oxide shifts to lower energy value after ball milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang GX, Gou XL, Horvat J, Park J (2008) J Phys Chem C 112:15220

    Article  CAS  Google Scholar 

  2. Raffaella B, Etienne S, Cinzia G, Fabia G, Mar GH, Miguel AG, Roberto C, Pantaleo DC (2009) Phys Chem Chem Phys 11:3680

    Google Scholar 

  3. Krishnamoorthy S, Rivas JA, Amiridis MD (2000) J Catal 193:264

    Article  CAS  Google Scholar 

  4. Sorescu M, Diamandescu L, Tomescu A, Tarabasanu-Mihaila D, Teodorescu V (2008) Mater Chem Phys 107:127

    Article  CAS  Google Scholar 

  5. Gulo A, Ivanovskaya M, Pfau A, Weimar U, Göpel W (1997) Thin Solid Films 307:288

    Article  Google Scholar 

  6. Perez-Maquela LA, Wang L, Matijević E (1998) Langmuir 14:4397

    Article  Google Scholar 

  7. Gurlo A, Bârsan N, Ivanovskaya M, Weimar U, Göpel W (1998) Sens Actuators B 47:92

    Article  Google Scholar 

  8. Takada T, Suzuki K, Nakane M (1993) Sens Actuators B 13–14:404

    Article  Google Scholar 

  9. Wang XD, Zhao XQ, Shen JY, Sun XY, Zhang T, Lin LW (2002) Phys Chem Chem Phys 4:2846

    Article  CAS  Google Scholar 

  10. Nomura K, Sakuma J, Ooki T, Takeda M (2008) Hyperfine Interact 184:117

    Article  CAS  Google Scholar 

  11. Ivanovskaya M, Kotsikau DA, Taurino A, Siciliano P (2007) Sens Actuators B 124:133

    Article  Google Scholar 

  12. Sorescu M, Diamandescu L, Tarabasanu-Mihaila D (2004) J Phys Chem Solids 65:1719

    Article  CAS  Google Scholar 

  13. Takizawa H, Uheda K, Endo T (2000) J Am Ceram Soc 83:2321

    Article  CAS  Google Scholar 

  14. Yu J, Duan LB, Wang YC, Rao GH (2009) J Phys Chem Solids 182:1563

    CAS  Google Scholar 

  15. Cesar I, Kay A, Martinez JAG, Grätzel M (2006) J Am Chem Soc 128:4582

    Article  CAS  Google Scholar 

  16. Kay A, Cesar I, Grätzel M (2006) J Am Chem Soc 128:15714

    Article  CAS  Google Scholar 

  17. Alexander BD, Kulesza PJ, Rukowska L, Solarska R, Augustynski J (2008) J Mater Chem 18:2298

    Article  CAS  Google Scholar 

  18. Ihara T, Miyoshi M, Ando M, Sugihara S, Iriyama Y (2001) J Mater Sci 36:4201. doi:10.1023/A:1017929207882

    Article  CAS  Google Scholar 

  19. Tojo T, Zhang QW, Saito F (2008) J Mater Sci 43:2962. doi:10.1007/s10853-006-1472-y

    Article  CAS  Google Scholar 

  20. Klissurski D, Iordanova R, Radev D, Kassabov ST, Milanova M, Chakarova K (2007) J Mater Sci 39:5375. doi:10.1023/B:JMSC.0000039248.33392.ed

    Article  Google Scholar 

  21. Yagodkin YD, Lileev AS, Grishina EN (2007) J Mater Sci 39:5255. doi:10.1023/B:JMSC.0000039222.53614.e6

    Article  Google Scholar 

  22. Bérardan D, Guilmeau E (2007) J Phys Condens Matter 19:236224 (9 pp)

    Article  Google Scholar 

  23. Singhal A, Achary SN, Manjanna J, Jayakumar OD, Kadam RM, Tyagi AK (2009) J Phys Chem C 113:3600

    Article  CAS  Google Scholar 

  24. Kohiki S, Murakawa Y, Hori K, Shimooka H, Tajiri T, Deguchi H, Oku M, Arai M, Mitome M, Bando Y (2005) Jpn J Appl Phys 44:L979

    Article  CAS  Google Scholar 

  25. Kubelka P, Munk F (1931) Z Tech Phys 12:593 (English translated by Westin S.)

    Google Scholar 

  26. Nath AK, Jiten C, Singh KC (2010) Physica B 405:430

    Article  CAS  Google Scholar 

  27. Sánchez LC, Arboleda JD, Saragovi C, Zysler RD, Barrero CA (2007) Physica B 389:145

    Article  Google Scholar 

  28. Sorescu M, Xu TH, Diamandescu L (2010) Mater Character 61:1103

    Article  CAS  Google Scholar 

  29. Khodaei M, Enayati MH, Karimzadeh F (2008) J Mater Sci 43:132. doi:10.1007/s10853-007-2123-7

    Article  CAS  Google Scholar 

  30. Wongsaenmai S, Yimnirun R, Ananta S (2007) J Mater Sci 42:3754. doi:10.1007/s10853-006-0404-1

    Article  CAS  Google Scholar 

  31. Morin FJ (1954) Phys Rev 93:1195

    Article  CAS  Google Scholar 

  32. Marusak LA, Messier R, White WB (1980) J Phys Chem Solids 41:981

    Article  CAS  Google Scholar 

  33. Dare-Edwards MP, Goodenough JB, Hamnett A, Trevellick PR (1983) J Chem Soc Faraday Trans 79:2027

    Article  CAS  Google Scholar 

  34. Walsh A, Silva JLD, Wei SH, Körber C, Klein A, Piper L, DeMasi A, Smith KE, Panaccione G, Torelli P, Payne DJ, Bourlange A, Egdell RG (2008) Phys Rev Lett 100:167402

    Article  Google Scholar 

  35. King PDC, Veal TD, Fuchs F, Wang CY, Payne DJ, Bourlange A, Zhang H, Bell GR, Cimalla V, Ambacher O, Egdell RG, Bechstedt F, McConville CF (2009) Phys Rev B 79:205211

    Article  Google Scholar 

  36. Thimsen E, Biswas S, Lo CS, Biswas P (2009) J Phys Chem C 113:2014

    Article  Google Scholar 

  37. Gilbert B, Frandsen C, Maxey ER, Sherman DM (2009) Phys Rev B 79:035108

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Science Foundation under grant DMR-0854794.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Sorescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorescu, M., Xu, T. & Diamandescu, L. Mechanochemical synthesis and characterization of xIn2O3·(1 − x)α-Fe2O3 nanostructure system. J Mater Sci 46, 2350–2358 (2011). https://doi.org/10.1007/s10853-010-5081-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5081-4

Keywords

Navigation