Skip to main content
Log in

Solid state synthesis of Bi 0 . 4 Sr 0 . 6 FeO 3 δ powder for SOFC applications

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

We report on the synthesis of Bi0.4Sr0.6FeO3 powder with cubic structure by solid state reaction (mechanical milling and calcination) from Bi2O3, SrCO3 and Fe2O3 stoichiometric ratios. Milled powder mixtures were heat treated between 775C and 825C for 30 and 60 min in oxygen atmosphere and characterized by X-ray diffraction (XRD), impedance as well as Mössbauer spectroscopy. The cubic phase of Bi0.4Sr0.6FeO3 was successfully obtained in samples milled for only 2 h and a subsequent calcination at 800C. Irrespective of milling time, heat treatments at lower temperatures (775C) still show spurious phases such as Sr0.23Bi0.76O1.1 (30 min) and Sr0.53Bi1.72O3 (60 min). Impedance spectroscopy show high values (105–109) Ω indicating strong structural bond between the atoms of the system and activation energies for the strontium ion around 04 eV. These results show a single dynamic behavior in a range from 1 to 2*105 Hz enabling data adjustment and analysis to a RC circuit. Conductivity results normally show a behavior that obeys the universal law of Jonscher’s relaxation (σ = σ Dc + α ω n) with values for the exponent n (0.8 < n < 1) typical in these structures. Mössbauer spectrometry measurements reveal that the hyperfine magnetic field of the precursors and milled powders corresponds to hematite 512 T. After the thermal treatment of the samples, the mean hyperfine field decreases to 489 ± 0.5 T showing the Bi and Sr atoms diffusion, (non- magnetic) in Fe2O3. While the result of isomer shift corresponds to a Fe+3 oxidation state irrespective of the heat treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singhal, S.C., Kenda, K.: High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Amsterdam (2003)

  2. Cortes-Escobedo, C.A., Munoz-Saldana, J., Bolarin-Miro, A.M., Sanchez de Jesus, F.: Determination of strontium and lanthanum zirconates in YPSZ—LSM mixtures for SOFC. J. Power Sources 180, 209–214 (2008). doi:10.1016/j.jpowsour.2008.01.067

    Article  ADS  Google Scholar 

  3. Brinkman, K., Iijima, T., Takamura, H.: The oxygen permeation characteristics of Bi1-xSrxFeO3 mixed ionic and electronic conducting ceramics. Solid State Ionics 181, 5–58 (2010). doi:doi:10.1016/j.ssi.2009.11.016

    Article  Google Scholar 

  4. Teraoka, Y., Zhang, H.M., Furukawa, S., Yamazoe, N.: Oxygen permeation through perovskite-type oxides. Chem. Lett. 174–1746 (1985). doi:10.1246/cl.1985.174

  5. Jiang, Q., Faraji, S., Slade, D.A., Stagg-Williams, S.M.: A Review of Mixed Ionic and Electronic Conducting Ceramic Membranes as Oxygen Sources for High-Temperature Reactors, pp 235–273. Elsevier BV, Amsterdam (2011)

    Google Scholar 

  6. Niu, Y., Sunarso, J., Zhou, W., Liang, F., Ge, L., Zhu, Z.: Evaluation and optimization of Bi1-xSrxFeO3-d perovskites as cathodes of solid oxide fuel cells. Int. J. Hydrogen Energy 36, 3179–3186 (2011). doi:10.1016/j.ijhydene.2010.11.10

    Article  Google Scholar 

  7. Baek, D., Kamegawa, A., Takamura, H.: Preparation and electrode properties of composite cathodes based on Bi 1 − x Sr x FeO 3 −δ with Perovskite-type structure. Solid State Ionics 262, 691–695 (2014). doi:10.1016/j.ssi.2014.01.00

    Article  Google Scholar 

  8. Folcke, E., Breton, J.M., Le Bréard, Y., Maignan, A.: Mössbauer spectroscopic analysis of Bi1-xSrxFeO3-d perovskites. Solid State Sci. 12, 138–1392 (2010). doi:doi:10.1016/j.solidstatesciences.2010.05.01

    Article  Google Scholar 

  9. Li, J., Duan, Y., He, H., Song, D.: Crystal structure, electronic structure, and magnetic properties of bismuth-strontium ferrites. J. Alloys Compd. 315, 25–264 (2001). doi:10.1016/S0925-8388(00)01313-X

    Google Scholar 

  10. Moure, C., Peña, O.: Recent advances in perovskites: processing and properties. Prog. Solid State Chem. 43, 12–148 (2015). doi:10.1016/j.progsolidstchem.2015.09.00

    Article  Google Scholar 

  11. Larson, A.C., Dreele, R.B., Von Alamos, L.: GSAS (2000)

  12. Telliet, J., Varret, F.: MOSFIT (1976)

  13. Lemine, O.M., Sajieddine, M., Bououdina, M., Msalam, R., Mufti, S., Alyamani, A.: Rietveld analysis and Mössbauer spectroscopy studies of nanocrystalline. J. Alloys Compd. 502, 279–282 (2010). doi:10.1016/j.jallcom.2010.04.17

    Article  Google Scholar 

  14. Jonscher, A.K.: Dielectric relaxation in solids. J. Phys. D. Appl. Phys. 32, R57–R70 (1999). doi:doi:10.1088/0022-3727/32/14/20

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project has been carried out partially at CENAPROT and LIDTRA national laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rico.

Additional information

This article is part of the Topical Collection on Proceedings of the 15th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2016), 13–18 November 2016, Panama City, Panama Edited by Juan A. Jaén

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rico, M., Rodriguez, R., Zapata, V.H. et al. Solid state synthesis of Bi 0 . 4 Sr 0 . 6 FeO 3 δ powder for SOFC applications. Hyperfine Interact 238, 57 (2017). https://doi.org/10.1007/s10751-017-1427-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-017-1427-5

Keywords

Navigation