Skip to main content
Log in

Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Zn–1.26 wt% Al alloy was directionally solidified upward with a constant growth rate (V = 16.6 μm/s) in a wide range of temperature gradients (1.94–5.15 K/mm) and with a constant temperature gradient (G = 5.15 K/mm) in a wide range of growth rates (8.3–500 μm/s) with a Bridgman-type directional solidification furnace. The microhardness (HV) and tensile strength (σ) of alloy were measured from directionally solidified samples. The dependency of the microhardness, tensile strength for directionally solidified Zn–1.26 wt% Al alloy on the solidification parameters (G, V) and microstructure parameters (λ1, λ2) were investigated and the relationships between them were experimentally obtained using regression analysis. According to present results, the microhardness and tensile strength of directionally solidified Zn–1.26 wt% Al alloy increase with increasing solidification processing parameters and decrease with the microstructure parameters. Variations of electrical resistivity (ρ) with the temperature in the range of 300–650 K were also measured using a standard dc four-point probe technique for cast samples. The enthalpy of fusion and specific heat for same alloy was also determined by means of differential scanning calorimeter (DSC) from heating trace during the transformation from solid to liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yılmaz F, Elliott R (1989) J Mater Sci 24:2065. doi:10.1007/BF02385422

    Article  Google Scholar 

  2. Grugel RN (1995) Metall Mater Trans A 26:496

    Article  Google Scholar 

  3. Çadırlı E, Gündüz M (2000) J Mater Sci 35:3837. doi:10.1023/A:1004829413966

    Article  Google Scholar 

  4. Mullis AM (2003) J Mater Sci 38:2517. doi:10.1023/A:1023977723475

    Article  CAS  Google Scholar 

  5. Li L, Zhang Y, Esling C, Zhao Z, Zuo Y, Zhang H, Cui J (2009) J Mater Sci 44:1063. doi:10.1007/s10853-008-3158-0

    Article  CAS  Google Scholar 

  6. Kumar A, Dutta P (2009) J Mater Sci 44:3952. doi:10.1007/s10853-009-3539-z

    Article  CAS  Google Scholar 

  7. Pandey JP, Prasad BK (1998) Metall Mater Trans A 29:1245

    Article  Google Scholar 

  8. Calayag TS (1986) Zinc–aluminium (ZA) cast alloys. Proc Int Symp CIM, Toronto

    Google Scholar 

  9. Zhu YH, Man HC, Dorantes-Rosales HJ, Lee WB (2003) J Mater Sci 38:2925. doi:10.1023/A:1024457109307

    Article  CAS  Google Scholar 

  10. Abou El-khair MT, Daoud A, Ismail A (2004) Mater Lett 58:1754

    Article  CAS  Google Scholar 

  11. Ravindranathan P, Patil KC (1987) J Mater Sci 22:3261. doi:10.1007/BF01161190

    Article  CAS  Google Scholar 

  12. Zhu Y, Yan B, Huang W (1995) J Mater Sci Tech 11:109

    CAS  Google Scholar 

  13. Hung FY, Lui TS, Chen LH, You JG (2007) J Mater Sci 42:3865. doi:10.1007/s10853-006-0463-3

    Article  CAS  Google Scholar 

  14. Krupinska B, Dobrzanski LA, Rdzawski ZM, Labisz K (2010) Arch Mater Sci Eng 43:13

    Google Scholar 

  15. Morgan SWK (1985) Zinc and its alloys and compounds. Wiley, New York

    Google Scholar 

  16. Flores OV, Kennedy C, Murr LE, Brown D, Pappu S, Nowak BM, McClure JC (1998) Scr Mater 38:703

    Article  CAS  Google Scholar 

  17. Park HS, Kimura T, Murakami T, Nagano Y, Nakata K, Ushio M (2004) Mater Sci Eng A 371:160

    Article  Google Scholar 

  18. Pürcek G (2005) J Mater Process Technol 169:242

    Article  Google Scholar 

  19. Osorio WR, Freire CM, Garcia A (2005) J Mater Sci 40:4493. doi:10.1007/s10853-005-0852-z

    Article  CAS  Google Scholar 

  20. Osorio WR, Freire CM, Garcia A (2005) J Alloys Compd 397:179

    Article  CAS  Google Scholar 

  21. Santos GA, Neto CM, Osorio WR, Garcia A (2007) Mater Des 28:2425

    Article  CAS  Google Scholar 

  22. Ding GL, Tewari SN (2002) J Cryst Growth 236:42

    Article  Google Scholar 

  23. Hui J, Tiwari R, Wu X, Tewari SN, Trivedi R (2002) Metall Mater Trans A 33:3499

    Article  Google Scholar 

  24. Feng J, Huang WD, Lin X, Pan QY, Li T, Zhou YH (1999) J Cryst Growth 197:393

    Article  CAS  Google Scholar 

  25. Ganesan S, Chan CL, Poirier DR (1992) Mater Sci Eng A 151:97

    Article  Google Scholar 

  26. Bhat MS, Poirier DR, Heinrich JC (1995) Metall Mater Trans B 26:1049

    Article  Google Scholar 

  27. Smiths FM (1958) Bell Syst Tech J 37:711

    Google Scholar 

  28. Valdes LB (1954) Proc IRE 42:420

    Article  Google Scholar 

  29. Arı M, Saatçi B, Gündüz M, Meydaneri F, Bozoklu M (2008) Mater Charact 59:624

    Article  Google Scholar 

  30. Robinson P (2003) Practical specific heat determination by power compensation DSC. Perkin Elmer, Seer Gren

    Google Scholar 

  31. Massalski TB (ed) (1990) Binary alloy phase diagrams, vol 3. ASM International, Materials Park

    Google Scholar 

  32. Böyük U, Kaya H, Çadırlı E, Maraşlı N, Ülgen A (2010) J Alloys Compd 491:143

    Article  Google Scholar 

  33. Kaya H, Çadırlı E, Böyük U, Maraşlı N (2008) App Surf Sci 255:307

    Article  Google Scholar 

  34. Kaya H, Böyük U, Çadırlı E, Ocak Y, Akbulut S, Keşlioğlu K, Maraşlı N (2008) Met Mater Int 14:575

    Article  CAS  Google Scholar 

  35. Vnuk F, Sahoo M, Van De Merwe R, Smith RW (1979) J Mater Sci 14:975. doi:10.1007/BF00550730

    CAS  Google Scholar 

  36. Vnuk F, Sahoo M, Baragor D, Smith RW (1980) J Mater Sci 15:2573. doi:10.1007/BF00550762

    Article  CAS  Google Scholar 

  37. Telli AI, Kısakürek SE (1988) Mater Sci Technol 4:153

    CAS  Google Scholar 

  38. Rosenberger MR, Ares AE, Gatti IP, Schvezov CE (2010) Wear 268:1533

    Article  CAS  Google Scholar 

  39. Kaya H, Gündüz M, Çadırlı E, Uzun O (2004) J Mater Sci 39:6571. doi:10.1023/B:JMSC.0000044897.98694.be

    Article  CAS  Google Scholar 

  40. Kaya H, Çadırlı E, Gündüz M, Ülgen A (2003) J Mater Eng Perform 12:544

    Article  CAS  Google Scholar 

  41. Khan S, Ourdjini A, Hamed QS, Najafabadi MAA, Elliott R (1993) J Mater Sci 28:5957. doi:10.1007/BF00365208

    Article  CAS  Google Scholar 

  42. Osorio WR, Garcia A (2002) Mater Sci Eng A 325:103

    Article  Google Scholar 

  43. Ares AE, Schvezov CE (2007) Metall Mater Trans A 38:1485

    Article  Google Scholar 

  44. Feng J, Huang WD, Lin X, Pan QY, Li T, Zhou YH (1999) J Mater Sci Lett 18:29

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Niğde University Scientific Research Project Unit under Contract No: FEB 2009/02. Authors would like to thank to the Niğde University Scientific Research Project Unit for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emin Çadırlı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çadırlı, E., Şahin, M. Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy. J Mater Sci 46, 1414–1423 (2011). https://doi.org/10.1007/s10853-010-4936-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4936-z

Keywords

Navigation