Skip to main content
Log in

Failure of Kissinger(-like) methods for determination of the activation energy of phase transformations in the vicinity of the equilibrium phase-transformation temperature

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The activation energies of heterogeneous equilibrium phase transformations have been frequently determined by Kissinger(-like) analysis. This work demonstrates that the applicability of Kissinger(-like) method(s) to determine activation energies of heterogeneous phase transformations is justified if the phase transformation occurs far away from the equilibrium phase-transformation temperature but not if the phase transformation is investigated in the vicinity of the equilibrium phase-transformation temperature. Experimental results on the kinetics of the order–disorder transformation in Ni3Sn2, obtained both near the equilibrium phase-transformation temperature and considerably below it (using quenched samples), expose the non-validity and confirm the validity, respectively, of activation-energy values obtained by Kissinger(-like) analyses applied in the corresponding temperature ranges. Application of the Kissinger(-like) analysis in a temperature range close to the equilibrium phase-transformation temperature leads to erroneous, abnormally high values for the activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Here the phase transformation α → β is focus of the attention. However, the considerations of “Kissinger-like method” section also pertain to other transformations, e.g. of the type α → β + γ, as long as start state and end state are identical for the range of temperatures for which the Arrhenius-type temperature dependence of the reaction rate (cf. Eq. 2) is adopted.

  2. Note that without recourse to a specific rate law in practice explicit values for k are not determinable because g/A together with kA, with A being a f- and T-independent constant, gives the same transformation rate.

  3. The XRPD analyses pertain to isothermal treatments of the alloys at various temperatures.

References

  1. Kissinger HE (1956) J Res Natl Bur Stand 57:217

    CAS  Google Scholar 

  2. Kissinger HE (1957) Anal Chem 29:1702

    Article  CAS  Google Scholar 

  3. Starink MJ (2004) Int Mater Rev 49:191

    Article  CAS  Google Scholar 

  4. Mittemeijer EJ (1992) J Mater Sci 27:3977. doi:10.1007/BF01105093

    Article  CAS  ADS  Google Scholar 

  5. Smith GW (1998) Thermochim Acta 313:27

    Article  CAS  Google Scholar 

  6. Mittemeijer EJ, Cheng L, van der Schaaf PJ, Brakman CM, Korevaar BM (1988) Metall Trans A 19:925

    Article  Google Scholar 

  7. Morra PV, Bottger AJ, Mittemeijer EJ (2001) J Therm Anal Calorim 64:905

    Article  CAS  Google Scholar 

  8. Gun B, Laws KJ, Ferry M (2006) J Non-Cryst Solids 352:3887

    Article  CAS  ADS  Google Scholar 

  9. Joseph K, Krishnan RV, Kutty KVG, Rao PRV (2009) Thermochim Acta 494:110

    Article  CAS  Google Scholar 

  10. An WK, Cai AH, Li JH, Luo Y, Li TL, Xiong X, Liu Y, Pan Y (2009) J Non-Cryst Solids 355:1703

    Article  CAS  ADS  Google Scholar 

  11. Nitsche H, Sommer F, Mittemeijer EJ (2005) J Non-Cryst Solids 351:3760

    Article  CAS  ADS  Google Scholar 

  12. Hashimoto T, Ueda Y, Yoshinaga M, Komazaki K, Asaoka K, Wang SR (2002) J Electrochem Soc 149:A1381

    Article  CAS  Google Scholar 

  13. van Dooren AA, Müller BW (1983) Thermochim Acta 65:257

    Article  Google Scholar 

  14. Popa VT (2003) Rev Roum Chim 48:987

    CAS  Google Scholar 

  15. Berkenpas MB, Barnard JA, Ramanujan RV, Aaronson HI (1986) Scr Metall 20:323

    Article  CAS  Google Scholar 

  16. Starink MJ (1997) J Mater Sci 32:6505. doi:10.1023/A:1018655026036

    Article  CAS  Google Scholar 

  17. Leineweber A, Mittemeijer EJ, Knapp M, Baehtz C (2007) Philos Mag 87:1821

    Article  CAS  ADS  Google Scholar 

  18. Leineweber A, Mittemeijer EJ (2007) Z Kristallogr 222:150

    Article  CAS  Google Scholar 

  19. Fjellvag H, Kjekshus A (1986) Acta Chem Scand A 40:23

    Article  Google Scholar 

  20. Schmetterer C, Flandorfer H, Richter KW, Saeed U, Kauffman M, Roussel P, Ipser H (2007) Intermetallics 15:869

    Article  CAS  Google Scholar 

  21. Vyazovkin S, Dollimore D (1996) J Chem Inf Comput Sci 36:42

    CAS  Google Scholar 

  22. Starink MJ (2003) Thermochim Acta 404:163

    Article  CAS  Google Scholar 

  23. Starink MJ (2007) J Mater Sci 42:483. doi:10.1007/s10853-006-1067-7

    Article  CAS  ADS  Google Scholar 

  24. Liu F, Sommer F, Bos C, Mittemeijer EJ (2007) Int Mater Rev 52:193

    Article  CAS  Google Scholar 

  25. Christian JW (1965) The theory of transformations in metals and alloys. Pergamon Press, Oxford

    Google Scholar 

  26. Porter DA, Easterling KE (1981) Phase transformations in metals and alloys. Van Nostrand Reinhold Company, New York

    Google Scholar 

  27. Zener C (1949) J Appl Phys 20:950

    Article  CAS  ADS  Google Scholar 

  28. Aaron HB, Fainstei D, Kotler GR (1970) J Appl Phys 41:4404

    Article  ADS  Google Scholar 

  29. Liu F, Song SJ, Sommer F, Mittemeijer EJ (2009) Acta Mater 57:6176

    Article  CAS  Google Scholar 

  30. Leineweber A, Ellner M, Mittemeijer EJ (2001) J Solid State Chem 159:191

    Article  CAS  ADS  Google Scholar 

  31. Leineweber A (2004) J Solid State Chem 177:1197

    Article  CAS  ADS  Google Scholar 

  32. Leineweber A, Mittemeijer EJ (2006) Z Kristallogr Suppl 23:351

    Article  Google Scholar 

  33. Kempen ATW, Sommer F, Mittemeijer EJ (2002) Acta Mater 50:3545

    Article  CAS  Google Scholar 

  34. Liu YC, Sommer F, Mittemeijer EJ (2004) Philos Mag 84:1853

    Article  CAS  ADS  Google Scholar 

  35. Baumann W, Leineweber A, Mittemeijer EJ (submitted) Acta Mater

Download references

Acknowledgements

This work was funded by the Max Planck Society within the inter-institutional research initiative “The Nature of Laves Phases”. The authors thank Prof. Dr F. Sommer for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Leineweber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, W., Leineweber, A. & Mittemeijer, E.J. Failure of Kissinger(-like) methods for determination of the activation energy of phase transformations in the vicinity of the equilibrium phase-transformation temperature. J Mater Sci 45, 6075–6082 (2010). https://doi.org/10.1007/s10853-010-4693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4693-z

Keywords

Navigation