Skip to main content
Log in

Analysis of nonisothermal transformation kinetics; tempering of iron-carbon and iron-nitrogen martensites

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A powerful method for the analysis of solid-state transformation kinetics can be based on non-isothermal analysis where the temperature corresponding to a fixed stage of transformation is measured as a function of heating rate. Adoption of a specific kinetic model is not required for valid application of this method. This removes constraints imposed unnecessarily on so-called Kissinger-like procedures. The method was applied to study and to compare the tempering kinetics of iron-carbon martensite and iron-nitrogen martensite (about 1.1 wt pct interstitials). Dilatometry and differential scanning calorimetry were employed. This combination of experimental techniques allowed distinction between preprecipitation processes as segregation and clustering of interstitials. In contrast with iron-carbon martensite, no indications were obtained for clustering of interstitials in iron-nitrogen martensite. The preprecipitation stages have activation energies of 75 to 85 kJ/mole, which are ascribed to volume diffusion of interstitials. The precipitation of the transition carbide/ nitride (first stage of tempering) occurs with an activation energy of 110 to 125 kJ/mole, which is ascribed to pipe diffusion of iron. The precipitation of the equilibrium carbide/nitride (third stage of tempering) is associated with an activation energy of 195 to 205 kJ/mole which is ascribed to combined pipe and volume diffusion of iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Christian:The Theory of Transformations in Metals and Alloys, 2nd ed., Pergamon Press, Oxford, 1975, part 1, pp. 525–48.

    Google Scholar 

  2. E. J. Mittemeijer, A. van Gent, and P. J. van der Schaaf:Metall. Trans. A, 1986, vol. 17A, pp. 1441–45.

    CAS  Google Scholar 

  3. L. V. Meisel and P. J. Cote:Acta Metall., 1983, vol. 31, pp. 1053–59.

    Article  CAS  Google Scholar 

  4. Z. Nishiyama:Martensitic Transformation, Academic Press, New York, NY, 1978.

    Google Scholar 

  5. C. M. Wayman:Introduction to the Crystallography of Martensitic Transformations, MacMillan, New York, NY, 1964.

    Google Scholar 

  6. G. R. Speich and W. C. Leslie:Metall. Trans., 1972, vol. 3, pp. 1043–54.

    CAS  Google Scholar 

  7. K. H. Jack:Proc. Roy. Soc., 1951, vol. A208, pp. 216–24.

    ADS  CAS  Google Scholar 

  8. T. Bell and W. S. Owen:J. Iron Steel Institute, 1967, vol. 205, pp. 428–34.

    CAS  Google Scholar 

  9. T. Bell and D. Brough:Metal. Sci. J., 1970, vol. 4, pp. 171–77.

    Article  CAS  Google Scholar 

  10. R. D. Garwood and G. Thomas:Metall. Trans., 1973, vol. 4, pp. 225–36.

    CAS  Google Scholar 

  11. E. J. Mittemeijer, M. van Rooijen, I. A. Wierszyłłowski, H. C. F. Rozendaal, and P. F. Colijn:Z. Metallkde., 1983, vol. 74, pp. 473–83.

    CAS  Google Scholar 

  12. A. van Gent, F. C. van Doorn, and E. J. Mittemeijer:Metall. Trans. A, 1985, vol. 16A, pp. 1371–84.

    Google Scholar 

  13. G. B. Olson and M. Cohen:Metall. Trans. A, 1983, vol. 14A, pp. 1057–65.

    Google Scholar 

  14. A. M. Sherman, G. T. Eldis, and M. Cohen:Metall. Trans. A, 1983, vol. 14A, pp. 995–1005.

    Google Scholar 

  15. M. Hillert:Acta Metall., 1959, vol. 7, pp. 653–58.

    Article  CAS  Google Scholar 

  16. M. Abramowitz and I. A. Stegun:Handbook of Mathematical Functions, Dover Publications, New York, NY, 1968, p. 228.

    Google Scholar 

  17. H. E. Kissinger:Anal. Chem., 1957, vol. 29, pp. 1702–06.

    Article  CAS  Google Scholar 

  18. T. Ozawa:J. Therm. Anal., 1970, vol. 2, pp. 301–24.

    Article  CAS  Google Scholar 

  19. Liu Cheng, C. M. Brakman, B. M. Korevaar, and E. J. Mittemeijer: Laboratory of Metallurgy, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands, unpublished research, 1987.

  20. I. Wierszyłłowski, L. Maldzinski, and M. Hrebeniak: inProc. 2nd Symp. of Nondestructive Characterization of Materials, J. F. Bussière, I.-P. Monchalin, C. O. Ruud, and R. È. Green, Jr., eds., Plenum Press, New York, NY, 1987, pp. 317–24.

    Google Scholar 

  21. D. N. Beshers: inDiffusion, ASM, Metals Park, OH, 1973, p. 219.

    Google Scholar 

  22. R. Kaplow, M. Ron, and N. DeChristofaro:Metall. Trans. A, 1983, vol. 14A, pp. 1135–45.

    CAS  Google Scholar 

  23. S. Nagakura, Y. Hirotsu, M. Kusunoki, T. Suzuki, and Y. Nakamura:Metall. Trans. A, 1983, vol. 14A, pp. 1025–31.

    Google Scholar 

  24. M. K. Miller, P. A. Beaven, S. S. Brenner, and G. D. W. Smith:Metall. Trans. A, 1983, vol. 14A, pp. 1021–24.

    Google Scholar 

  25. M. van Rooijen and E. J. Mittemeijer:Scripta Metall., 1982, vol. 16, pp. 1255–60.

    Article  Google Scholar 

  26. K. H. Jack:J. Iron Steel Institute, 1951, vol. 169, pp. 26–36.

    CAS  Google Scholar 

  27. Y. Hirotsu and S. Nagakura:Acta Metall., 1972, vol. 20, pp. 645–55.

    Article  CAS  Google Scholar 

  28. M. Cohen:Trans. JIM, 1970, vol. 11, pp. 145–51.

    CAS  Google Scholar 

  29. W. T. M. Straver: M.Sc. Thesis, Delft University of Technology, The Netherlands, 1981.

  30. F. S. Buffington, K. Hirano, and M. Cohen:Acta Metall., 1961, vol. 9, pp. 434–39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittemeher, E.J., Cheng, L., van der Schaaf, P.J. et al. Analysis of nonisothermal transformation kinetics; tempering of iron-carbon and iron-nitrogen martensites. Metall Trans A 19, 925–932 (1988). https://doi.org/10.1007/BF02628377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02628377

Keywords

Navigation