Skip to main content
Log in

The effect of growth conditions and N2/O2 ambient on LO-phonon replicas during epitaxial growth of ZnO on c-sapphire

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High quality heteroepitaxial thin films of ZnO:N were grown by pulsed laser deposition using a two-step growth method and annealed in situ at different temperatures and ambient conditions. Films were analyzed by X-ray diffraction (XRD), electrical measurements, and photoluminescence experiments at low temperatures to investigate the effect of nitrogen doping. The XRD results demonstrate epitaxial growth on the c-sapphire substrates, with average grain size of 57 nm. Photoluminescence spectra reveals a peak at 3.061 eV (405.1 nm) which is part of the longitudinal-optical-phonon replicas of excitons bound to neutral acceptors \( {\text{A}}_{1}^{0} \,{\text{X}}_{\text{A}} \) at 3.348 eV (370.4 nm), attributed in recent investigations to a newly reported donor–acceptor pair. Electrical resistivity and Hall effect measurements were performed using standard four point van der Pauw geometry at room temperature. Fresh films exhibited a resistivity of 3.1 × 10−3 Ω cm, a carrier density of 1.3 × 1019 cm−3, and a mobility of 53 cm2/V s. During approximately 2 weeks the as-deposited films presented a p-type behavior, as shown by the positive sign of the Hall constant measured. Thereafter, films reverted to n-type. From electrical measurements and photoluminescence spectra, the acceptor energy was determined to be 150 meV, in close agreement with reported values. These results are consistent with those presented in the literature for high purity crystals or homoepitaxial thin films, even though samples for the present study were processed at lower annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Özgür Ü, Alivov YaI, Liu C, Teke A, Reshchikov MA, Dogǎn S, Avrutin V, Cho SJ, Morkoç H (2005) J Appl Phys 98:041301

    Article  ADS  Google Scholar 

  2. Zhang SB, Wei SH, Zunger A (1998) J Appl Phys 83:3192

    Article  CAS  ADS  Google Scholar 

  3. Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE (1996) J Appl Phys 79:798

    Article  Google Scholar 

  4. Vanheusden K, Seager CH, Warren WL, Tallant DR, Voigt JA, Gnade BE (1997) J Appl Phys 75:11

    CAS  Google Scholar 

  5. Look DC, Reynolds DC, Litton CW, Jones RL, Eason DB, Cantwell G (2002) Appl Phys Lett 81:1830

    Article  CAS  ADS  Google Scholar 

  6. Yan Y, Zhang SB, Pantelides S (2001) Phys Rev Lett 86:5723

    Article  CAS  ADS  PubMed  Google Scholar 

  7. Joseph M, Tabata H, Kawai T (1999) Jpn J Appl Phys 38:L1205

    Article  CAS  ADS  Google Scholar 

  8. Van de Walle CG (2000) Phys Rev Lett 85:1012

    Article  ADS  Google Scholar 

  9. Van de Walle CG (2001) Phys B 308:899

    Article  ADS  Google Scholar 

  10. Strzhemechny YM, Nemergut J, Smith PE, Bae J, Look DC, Brillson LJ (2003) J Appl Phys 94:4256

    Article  CAS  ADS  Google Scholar 

  11. Lyons JL, Janotti A, Van der Walle CG (2009) J Appl Phys 95:252105

    Google Scholar 

  12. Monteiro T, Neves AJ, Carmo MC, Soares MJ, Peres M, Wang J (2005) J Appl Phys 98:013502

    Article  ADS  Google Scholar 

  13. Adekore BT, Pierce JM, Davis RF, Barlage DW, Muth JF (2007) J Appl Phys 102:024908

    Article  ADS  Google Scholar 

  14. Thonke K, Shirra M, Schneider R, Reisser A, Prinz GM, Feneberg M, biskupek J, Kaiser U, Sauer R (2009) Microelectron J 40:210

    Article  CAS  Google Scholar 

  15. Tomzig E, Helbig R (1976) J Lumin 14:403

    CAS  Google Scholar 

  16. Klingshirn CF (1995) Semiconductor optics. Springer, Berlin

    Google Scholar 

  17. Park WI, YI G-C (2001) J Electron Mater 30:L32

    Article  CAS  ADS  Google Scholar 

  18. Garces NY, Wang LJ, Giles NC, Halliburton LE, Cantwell G, Eason DB (2003) J Appl Phys 94:519

    Article  CAS  ADS  Google Scholar 

  19. Zeuner A, Alves HR, Hofmann DM, Meyer BK, Hoffmann A, Haboeck U, Strassburg M, Dworzak M (2002) Phys Status Solidi B 234:R7

    Article  CAS  ADS  Google Scholar 

  20. Madelung O (1996) Semiconductor—basic data. Springer, Berlin

    Google Scholar 

  21. Gerthsen D, Litvinov D (2002) Appl Phys Lett 81:21

    Article  Google Scholar 

  22. Siegle H, Hoffmann A, Eckey L, Thomsen C, Christen J, Bertran F, Schmidt D, Rudloff D, Hiramatsu K (1997) Appl Phys Lett 71:17

    Article  Google Scholar 

  23. Chichibu SF, Onuma T, Ubota M, Uedono A, Sota T, Tsukazaki A, Ohtomo A, Kawasaki M (2006) J Appl Phys 99:093505

    Article  ADS  Google Scholar 

  24. Liang HW, Lu YM, Shen DZ, Liu YC, Yan JF, Shan CX, Liu BH, Zhang ZZ, Zhang JY, Fan XW (2005) Phys Status Solidi A 202:1060

    Article  CAS  ADS  Google Scholar 

  25. Hwang DK, Kim HS, Lim JH, Oh JY, Yang JH, Park SJ, Kim KK, Look DC, Park YS (2005) Appl Phys Lett 86:151917

    Article  ADS  Google Scholar 

  26. Ryu YR, Lee TS, White HW (2003) Appl Phys Lett 83:87

    Article  CAS  ADS  Google Scholar 

  27. Mei YF, Fu RKY, Wang RS, Wong KW, Ong HC, Ding L, Ge WK, Siu GG, Chu PK (2005) Mater Res Soc Symp Proc 864:363

    Google Scholar 

  28. van Dijken A, Meulenkamp EA, Vanmaekelbergh D, Meijerink A (2000) J Lumin 87:454

    Article  Google Scholar 

  29. van Dijken A, Meulenkamp EA, Vanmaekelbergh D, Meijerink A (2000) J Lumin 90:123

    Article  Google Scholar 

  30. Jin BJ, Im S, Lee SY (2000) Thin Solid Films 366:108

    Article  ADS  Google Scholar 

  31. Reynolds DC, Litton CW, Collins TC, Hoelscher JE, Nause J (2006) J Appl Phys 88:141919

    Google Scholar 

  32. Smith TP, Mclean HA, Smith DJ, Miraglia PQ, Roskowski AM, Davis RF (2004) J Electron Mater 33:991

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín A. Aparicio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aparicio, J.A., Fernández, F.E. The effect of growth conditions and N2/O2 ambient on LO-phonon replicas during epitaxial growth of ZnO on c-sapphire. J Mater Sci 45, 6009–6017 (2010). https://doi.org/10.1007/s10853-010-4684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4684-0

Keywords

Navigation