Skip to main content
Log in

Solvent control of cellulose acetate nanofibre felt structure produced by electrospinning

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Non-woven structures of cellulose acetate (CA) fibres of 90 nm–5 μm in diameter (spinning parameters 90 nm beaded fibres: 12% CA in EtOH-DMSO 1/1, 22 kV, 30 cm, 0.5 mL/h; maximum 5 μm diameter fused fibres spun with 14% CA in Ac-BenzOH 2/1, 22 kV, 24 cm, 13 mL/h) were produced by electrospinning. On the basis of Hansen solubility theory, composition of binary solvent mixtures (ketones—acetone, methyl ethyl ketone (MEK), and alcohols—benzyl alcohol, propylene glycol and dimethylsulphoxide) was optimized with respect to control of fibre felt morphology. Fibre networks of high packing density were obtained with binary low-volatile alcohols/MEK solvent mixtures, a decreased spinning distance and an increased feed rate. Substituting MEK by acetone in the solvent mixture resulted in the formation of nanofibre felt with a low degree of fibre cross-links. Thus, solvent control is a key aspect for control of electrospun fibre felt structures, which may serve as scaffolds for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Subbiah T, Bhat GS, Tock RW, Pararneswaran S, Ramkumar SS (2005) J Appl Polym Sci 96:557

    Article  CAS  Google Scholar 

  2. Li D, Xia YN (2004) Adv Mater 16:1151

    Article  CAS  Google Scholar 

  3. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) Compos Sci Technol 63:2223

    Article  CAS  Google Scholar 

  4. Reneker DH, Yarin AL, Fong H, Koombhongse S (2000) J Appl Phys 87:4531

    Article  CAS  ADS  Google Scholar 

  5. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Appl Phys Lett 78:1149

    Article  CAS  ADS  Google Scholar 

  6. Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) Biomaterials 24:2077

    Article  CAS  PubMed  Google Scholar 

  7. Laurencin CT, Ambrosio AMA, Borden MD, Cooper JA (1999) Ann Rev Biomed Eng 1:19

    Article  CAS  Google Scholar 

  8. Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT (2008) Biomaterials 29:4100

    Article  CAS  PubMed  Google Scholar 

  9. Schiffman JD, Schauer CL (2008) Polym Rev 48:317

    Article  CAS  Google Scholar 

  10. Liu HQ, Tang CY (2007) Polym J 39:65

    Article  CAS  MathSciNet  Google Scholar 

  11. Carrizales C, Pelfrey S, Rincon R, Eubanks TM, Kuang A, McClure MJ, Bowlin GL, Macossay J (2008) Polym Adv Technol 19:124

    Article  CAS  Google Scholar 

  12. Inai R, Kotaki M, Ramakrishna S (2005) Nanotechnology 16:208

    Article  CAS  Google Scholar 

  13. Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR (2006) Biomaterials 27:3631

    CAS  PubMed  Google Scholar 

  14. Teo WE, Ramakrishna S (2006) Nanotechnology 17:R89

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Greiner A, Wendorff JH (2007) Angew Chem Int Ed 46:5670

    Article  CAS  Google Scholar 

  16. Ma ML, Hill RM, Lowery JL, Fridrikh SV, Rutledge GC (2005) Langmuir 21:5549

    Article  CAS  PubMed  Google Scholar 

  17. Liu H, Hsieh Y-L (2002) J Polym Sci Part B: Polym Phys 40:2119

    Article  CAS  Google Scholar 

  18. Son WK, Youk JH, Lee TS, Park WH (2004) J Polym Sci Part B: Polym Phys 42:5

    Article  CAS  Google Scholar 

  19. Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Cellulose 14:563

    Article  CAS  Google Scholar 

  20. Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Koombhongse P, Rangkupan R, Supaphol P (2005) Eur Pol J 41:409

    Article  CAS  Google Scholar 

  21. Barton AFM (1985) Handbook of solubility parameters and other cohesion parameters. CRC Press Inc., Boca Raton, FL

    Google Scholar 

  22. Hoernschemeyer D (1974) J Appl Polym Sci 18:61

    Article  CAS  Google Scholar 

  23. Shenoy SL, Bates WD, Frisch HL, Wnek GE (2005) Polymer 46:3372

    Article  CAS  Google Scholar 

  24. Gupta P, Elkins C, Long TE, Wilkes GL (2005) Polymer 46:4799

    CAS  Google Scholar 

  25. Colby RH, Rubinstein M, Daoud M (1994) J Phys II 4:1299

    Google Scholar 

  26. Fong H, Chun I, Reneker DH (1999) Polymer 40:4585

    Article  CAS  Google Scholar 

  27. McKee MG, Wilkes GL, Colby RH, Long TE (2004) Macromolecules 37:1760

    Article  CAS  ADS  Google Scholar 

  28. McKee MG, Elkins CL, Long TE (2004) Polymer 45:8705

    Article  CAS  Google Scholar 

  29. He JH, Wan YQ, Yu MY (2004) Int J Nonlin Sci Num 5:243

    CAS  Google Scholar 

  30. Baumgarten PK (1971) J Colloid Interf Sci 36:71

    Article  CAS  Google Scholar 

  31. Yarin AL, Koombhongse S, Reneker DH (2001) J Appl Phys 89:3018

    Article  CAS  ADS  Google Scholar 

  32. Reneker DH, Fong H (2005) Polymeric nanofibers. American Chemical Society, Washington, DC

    Google Scholar 

  33. Eda E, Shivkumar S (2007) J Appl Polym Sci 106:475

    Article  CAS  Google Scholar 

  34. Choktaweesap N, Arayanarakul K, Aht-ong D, Meechaisue C, Supaphol P (2007) Polym J 39:622

    Article  CAS  Google Scholar 

  35. Tan SH, Inai R, Kotaki M, Ramakrishna S (2005) Polymer 46:6128

    Article  CAS  Google Scholar 

  36. Lee SJ, Oh SH, Liu J, Soker S, Atala A, Yoo JJ (2008) Biomaterials 29:1422

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks go to Dr. Jochen Kaschta from the chair of polymer materials for helpful discussions. Financial support from German Science Foundation (DFG) under contract number GR 961/26-1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Haas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, D., Heinrich, S. & Greil, P. Solvent control of cellulose acetate nanofibre felt structure produced by electrospinning. J Mater Sci 45, 1299–1306 (2010). https://doi.org/10.1007/s10853-009-4082-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-4082-7

Keywords

Navigation