Skip to main content

Advertisement

Log in

Using water to control electrospun Polycaprolactone fibre morphology for soft tissue engineering

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Control of the properties of electrospun polycaprolactone can be achieved by adjusting the acetic acid:water ratio used to dissolve and electrospin the polymer. In this work, we studied the effect of using up to 15 wt% water in the solvent mixture. Solution conductivity and viscosity and fibre morphology vary dramatically with water content and solution age. Two days after initial solution preparation, electrospinning yields regular fibres for a water content of 0 wt% and 5 wt%, irregular fibres for a 10 wt% water content and irregular and fused fibres for a 15 wt% water content. Fibres with the highest crystallinity (60%) were obtained from solutions containing 5 wt% water while the highest elastic modulus (8.6 ± 1.4 MPa) and tensile stress (4.3 ± 0.3 MPa) pertain to fibres obtained from solutions containing 10 wt% water. Enzymatic fibre degradation is faster the higher the water content in the precursor solution. Adhesion ratio of human foetal fibroblasts was highest on scaffolds obtained from precursor solutions containing 0 wt% water. Cell population increases for all scaffolds and populations quickly become equivalent, with no statistically significant differences between them. Cells exhibit a more extended morphology on the 5 wt% scaffold and a more compact morphology on the 0 wt% scaffold. In summary, a small water content in the solvent allows a significant control over fibre diameter, scaffold properties and the production of scaffolds that support cell adhesion and proliferation. This strategy can be used in soft tissue engineering to influence cell behaviour and the degradation rate of the scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific. https://doi.org/10.1142/5894

  2. Szentivanyi AL, Zernetsch H, Menzel H, Glasmacher B (2011) A review of developments in electrospinning technology: new opportunities for the design of artificial tissue structures. Int J Artif Organs 34:986–997. https://doi.org/10.5301/ijao.5000062

    Article  CAS  PubMed  Google Scholar 

  3. Di Cio S, Gautrot JE (2016) Cell sensing of physical properties at the nanoscale: mechanisms and control of cell adhesion and phenotype. Acta Biomater 30:26–48. https://doi.org/10.1016/j.actbio.2015.11.027

    Article  CAS  PubMed  Google Scholar 

  4. Croisier F, Duwez A-S, Jérôme C, Léonard AF, van der Werf KO, Dijkstra PJ, Bennink ML (2012) Mechanical testing of electrospun PCL fibers. Acta Biomater 8:218–224. https://doi.org/10.1016/j.actbio.2011.08.015

    Article  CAS  PubMed  Google Scholar 

  5. Chen L, Yan C, Zheng Z (2017) Functional polymer surfaces for controlling cell behaviors. Mater Today 21:38–59. https://doi.org/10.1016/j.mattod.2017.07.002

    Article  CAS  Google Scholar 

  6. Kim GH (2008) Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold. Biomed Mater 3:025010. https://doi.org/10.1088/1748-6041/3/2/025010

    Article  CAS  PubMed  Google Scholar 

  7. Gomes SR, Rodrigues G, Martins GG, Roberto M a, Mafra M, Henriques CMR, Silva JC (2015) In vitro and in vivo evaluation of electrospun nanofibers of PCL, chitosan and gelatin: A comparative study. Mater Sci Eng C 46:348–358. https://doi.org/10.1016/j.msec.2014.10.051

    Article  CAS  Google Scholar 

  8. Cipitria A, Skelton A, Dargaville TR, Dalton PD, Hutmacher DW (2011) Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem 21:9419. https://doi.org/10.1039/c0jm04502k

    Article  CAS  Google Scholar 

  9. Bhaskaran A, Prasad T, Kumary TV, Anil Kumar PR (2018) Simple and efficient approach for improved cytocompatibility and faster degradation of electrospun polycaprolactone fibers. Polym Bull 76:1333–1347. https://doi.org/10.1007/s00289-018-2442-7

    Article  CAS  Google Scholar 

  10. Thakare VG, Joshi PA, Godse RR, Bhatkar VB, Wadegaokar PA, Omanwar SK (2017) Fabrication of polycaprolactone/zirconia nanofiber scaffolds using electrospinning technique. J Polym Res 24:232. https://doi.org/10.1007/s10965-017-1388-z

    Article  CAS  Google Scholar 

  11. Kumar AP (2017) Self Organized Skin Equivalent by Epithelial and Fibroblast Cells on Polycaprolactone Electrospun Mat with Porous Fibers. Adv Tissue Eng Regen Med Open Access 3:1–6. https://doi.org/10.15406/atroa.2017.03.00056

    Article  Google Scholar 

  12. Jahangiri M, Kalajahi AE, Rezaei M, Bagheri M (2019) Shape memory hydroxypropyl cellulose-g-poly (ε-caprolactone) networks with controlled drug release capabilities. J Polym Res 26:136. https://doi.org/10.1007/s10965-019-1798-1

    Article  CAS  Google Scholar 

  13. Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B (2019) Degradation and stabilization of polyurethane elastomers. Prog Polym Sci 90:211–268. https://doi.org/10.1016/j.progpolymsci.2018.12.003

    Article  CAS  Google Scholar 

  14. Olgun U, Tunç K, Hoş A (2019) Preparation and antibacterial properties of nano biocomposite Poly(ε-caprolactone)-SiO 2 films with nanosilver. J Polym Res 26. https://doi.org/10.1007/s10965-018-1686-0

  15. Li WJ, Tuli R, Huang X, Laquerriere P, Tuan RS (2005) Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials. 26:5158–5166. https://doi.org/10.1016/j.biomaterials.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  16. Wise JK, Yarin AL, Megaridis CM, Cho M (2009) Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng Part A 15:913–921. https://doi.org/10.1089/ten.tea.2008.0109

    Article  CAS  PubMed  Google Scholar 

  17. Pitt CG, Chasalow FI, Hibionada YM, Klimas DM, Park T, Carolina N (1981) Aliphatic Polyesters . I . The Degradation of Poly ( e- caprolactone ) In Vivo. J Appl Polym Sci 26:3779–3787. https://doi.org/10.1002/app.1981.070261124

    Article  CAS  Google Scholar 

  18. Woodward SC, Brewer PS, Moatamed F, Schindler A, Pitt CG (1985) The intracellular degradation of poly(epsilon-caprolactone). J Biomed Mater Res 19:437–444. https://doi.org/10.1002/jbm.820190408

    Article  CAS  PubMed  Google Scholar 

  19. Henriques C, Vidinha R, Botequim D, Borges JP, Silva JAMC (2009) A Systematic Study of Solution and Processing Parameters on Nanofiber Morphology Using a New Electrospinning Apparatus. J Nanosci Nanotechnol 9:3535–3545. https://doi.org/10.1166/jnn.2009.NS27

    Article  CAS  PubMed  Google Scholar 

  20. Guarino V, Cirillo V, Taddei P, Alvarez-Perez MA, Ambrosio L (2011) Tuning size scale and crystallinity of PCL electrospun fibres via solvent permittivity to address hMSC response. Macromol Biosci 11:1694–1705. https://doi.org/10.1002/mabi.201100204

    Article  CAS  PubMed  Google Scholar 

  21. Qin X, Wu D (2012) Effect of different solvents on poly(caprolactone) (PCL) electrospun nonwoven membranes. J Therm Anal Calorim 107:1007–1013. https://doi.org/10.1007/s10973-011-1640-4

    Article  CAS  Google Scholar 

  22. Van Der Schueren L, De Schoenmaker B, Kalaoglu ÖI, De Clerck K (2011) An alternative solvent system for the steady state electrospinning of polycaprolactone. Eur Polym J 47:1256–1263. https://doi.org/10.1016/j.eurpolymj.2011.02.025

    Article  CAS  Google Scholar 

  23. Ferreira JL, Gomes S, Henriques C, Borges JP, Silva JC (2014) Electrospinning polycaprolactone dissolved in glacial acetic acid: Fiber production, nonwoven characterization, and in vitro evaluation. J Appl Polym Sci 131:41068. https://doi.org/10.1002/app.41068

    Article  CAS  Google Scholar 

  24. Li W, Shi L, Zhang X, Liu K, Ullah I, Cheng P (2018) Electrospinning of polycaprolactone nanofibers using H2O as benign additive in polycaprolactone/glacial acetic acid solution. J Appl Polym Sci 135:1–9. https://doi.org/10.1002/app.45578

    Article  CAS  Google Scholar 

  25. Semnani D, Naghashzargar E, Hadjianfar M, Dehghan Manshadi F, Mohammadi S, Karbasi S, Effaty F (2017) Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. Int J Polym Mater Polym Biomater 66:149–157. https://doi.org/10.1080/00914037.2016.1190931

    Article  CAS  Google Scholar 

  26. Kaur S, Rana D, Matsuura T, Sundarrajan S, Ramakrishna S (2012) Preparation and characterization of surface modified electrospun membranes for higher filtration flux. J Memb Sci 390–391:235–242. https://doi.org/10.1016/j.memsci.2011.11.045

    Article  CAS  Google Scholar 

  27. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell. 126:677–689. https://doi.org/10.1016/j.cell.2006.06.044

    Article  CAS  PubMed  Google Scholar 

  28. Bauer AJP, Wu Y, Liu J, Li B (2015) Visualizing the inner architecture of poly(ϵ-caprolactone)-based biomaterials and its impact on performance optimization. Macromol Biosci 15:1554–1562. https://doi.org/10.1002/mabi.201500175

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Rodriguez-Perez M a, Reis RL, Mano JF (2005) Thermal and thermomechanical behaviour of polycaprolactone and starch/polycaprolactone blends for biomedical applications. Macromol Mater Eng 290:792–801. https://doi.org/10.1002/mame.200500003

    Article  CAS  Google Scholar 

  30. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Álvarez E, Vázquez G, Sánchez-Vilas M, Sanjurjo B, Navaza JM (1997) Surface tension of organic acids + water binary mixtures from 20 °C to 50 °C. J Chem Eng Data 42:957–960. https://doi.org/10.1021/je970025m

    Article  Google Scholar 

  32. Shin YM, Hohman MM, Brenner MP, Rutledge GC (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer (Guildf). 42:09955–09967. https://doi.org/10.1016/S0032-3861(01)00540-7

    Article  CAS  Google Scholar 

  33. Fukushima K, Feijoo JL, Yang MC (2012) Abiotic degradation of poly(DL-lactide), poly(ε-caprolactone) and their blends. Polym Degrad Stab 97:2347–2355. https://doi.org/10.1016/j.polymdegradstab.2012.07.030

    Article  CAS  Google Scholar 

  34. Gholipour Kanani A, Bahrami SH (2011) Effect of changing solvents on poly(-Caprolactone) Nanofibrous webs morphology. J Nanomater 2011:1–10. https://doi.org/10.1155/2011/724153

    Article  CAS  Google Scholar 

  35. Sajeev US, Anand KA, Menon D, Nair S (2008) Control of nanostructures in PVA, PVA/chitosan blends and PCL through electrospinning. Bull Mater Sci 31:343–351. https://doi.org/10.1007/s12034-008-0054-9

    Article  CAS  Google Scholar 

  36. Lowery JL, Datta N, Rutledge GC (2010) Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ɛ-caprolactone) fibrous mats. Biomaterials. 31:491–504. https://doi.org/10.1016/j.biomaterials.2009.09.072

    Article  CAS  PubMed  Google Scholar 

  37. Hsu C, Shivkumar S (2004) Nano-sized beads and porous fiber constructs of poly ( ε -caprolactone ) produced by electrospinning. J Mater Sci 9:3003–3013

    Article  Google Scholar 

  38. Wong S-C, Baji A, Leng S (2008) Effect of fiber diameter on tensile properties of electrospun poly(ɛ-caprolactone). Polymer (Guildf) 49:4713–4722. https://doi.org/10.1016/j.polymer.2008.08.022

    Article  CAS  Google Scholar 

  39. Johnson J, Niehaus A, Nichols S, Lee D, Koepsel J, Anderson D, Lannutti J (2009) Electrospun PCL in vitro: a microstructural basis for mechanical property changes. J Biomater Sci Polym Ed 20:467–481. https://doi.org/10.1163/156856209X416485

    Article  CAS  PubMed  Google Scholar 

  40. Balguid A, Mol A, van Marion MH, Bank R a, Bouten CVC, Baaijens FPT (2009) Tailoring Fiber Diameter in Electrospun Poly(ɛ-Caprolactone) Scaffolds for Optimal Cellular Infiltration in Cardiovascular Tissue Engineering. Tissue Eng A 15:437–444. https://doi.org/10.1089/ten.tea.2007.0294

    Article  CAS  Google Scholar 

  41. Tan EPS, Ng SY, Lim CT (2005) Tensile testing of a single ultrafine polymeric fiber. Biomaterials. 26:1453–1456. https://doi.org/10.1016/j.biomaterials.2004.05.021

    Article  CAS  PubMed  Google Scholar 

  42. Sun L, Han RPS, Wang J, Lim CT (2008) Modeling the size-dependent elastic properties of polymeric nanofibers. Nanotechnology. 19:455706. https://doi.org/10.1088/0957-4484/19/45/455706

    Article  CAS  PubMed  Google Scholar 

  43. Yuan B, Wang J, Han RPS (2015) Capturing tensile size-dependency in polymer nanofiber elasticity. J Mech Behav Biomed Mater 42:26–31. https://doi.org/10.1016/j.jmbbm.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  44. Lim CT, Tan EPS, Ng SY (2008) Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers. Appl Phys Lett 92:141908. https://doi.org/10.1063/1.2857478

    Article  CAS  Google Scholar 

  45. Silver FH, Freeman JW, DeVore D (2001) Viscoelastic properties of human skin and processed dermis. Skin Res Technol 7:18–23. https://doi.org/10.1034/j.1600-0846.2001.007001018.x

    Article  CAS  PubMed  Google Scholar 

  46. Wu C, Jim TF, Gan Z, Zhao Y, Wang S (2000) A heterogeneous catalytic kinetics for enzymatic biodegradation of poly(ϵ-caprolactone) nanoparticles in aqueous solution. Polymer (Guildf). 41:3593–3597. https://doi.org/10.1016/S0032-3861(99)00586-8

    Article  CAS  Google Scholar 

  47. Vieira T, Silva JC, Borges JP, Henriques C (2018) Synthesis, electrospinning and in vitro test of a new biodegradable gelatin-based poly(ester urethane urea) for soft tissue engineering. Eur Polym J 103:271–281. https://doi.org/10.1016/j.eurpolymj.2018.04.005

    Article  CAS  Google Scholar 

  48. Martins AM, Pham QP, Malafaya PB, Sousa R a, Gomes ME, Raphael RM, Kasper FK, Reis RL, Mikos AG (2009) The role of lipase and alpha-amylase in the degradation of starch/poly(epsilon-caprolactone) fiber meshes and the osteogenic differentiation of cultured marrow stromal cells. Tissue Eng A 15:295–305. https://doi.org/10.1089/ten.tea.2008.0025

    Article  CAS  Google Scholar 

  49. Venugopal JR, Zhang Y, Ramakrishna S (2006) In vitro culture of human dermal fibroblasts on electrospun Polycaprolactone collagen Nanofibrous membrane. Artif Organs 30:440–446. https://doi.org/10.1111/j.1525-1594.2006.00239.x

    Article  CAS  PubMed  Google Scholar 

  50. Woo KM, Chen VJ, Ma PX (2003) Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 67:531–537. https://doi.org/10.1002/jbm.a.10098

    Article  CAS  PubMed  Google Scholar 

  51. Chen F, Lee CN, Teoh SH (2007) Nanofibrous modification on ultra-thin poly(e-caprolactone) membrane via electrospinning. Mater Sci Eng C 27:325–332. https://doi.org/10.1016/j.msec.2006.05.004

    Article  CAS  Google Scholar 

  52. Washburn NR, Yamada KM, Simon CG, Kennedy SB, Amis EJ (2004) High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials. 25:1215–1224. https://doi.org/10.1016/j.biomaterials.2003.08.043

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly funded by FEDER through the COMPETE 2020 Programme and by National funds through FCT – Portuguese Foundation for Science and Technology – under the project UID/CTM/50025/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Carvalho Silva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, S., Querido, D., Ferreira, J.L. et al. Using water to control electrospun Polycaprolactone fibre morphology for soft tissue engineering. J Polym Res 26, 222 (2019). https://doi.org/10.1007/s10965-019-1890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1890-6

Keywords

Navigation