Skip to main content
Log in

Influence of solvents on a near-field electrospun straight fine fibre

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Near-field electrospinning (NFES) has been pursued in additive manufacturing for the fabrication of artificial extracellular matrix with controlled pattern structures from a continuous straight fine fibre. Due to short flight time, achieving a deposition of a solidified straight fine fibre can potentially be affected by the properties of a solvent. Therefore, this article presents an investigation of the effects of solvents on an NFES straight fine fibre. Dichloromethane (DCM), acetone, chloroform, toluene and dimethylformamide were the five solvents in this investigation. They were tested at the standoff distances of 3, 5 and 10 mm, and by using the needle gauges of 22G, 24G and 26G. According to the results, DCM having a relatively low boiling temperature and moderate dielectric constant delivered the smallest diameter straight uniform fibre. Furthermore, a solvent having a moderate boiling temperature and low dielectric constant is expected to deliver a thinner straight uniform fibre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Yoon K, Kim K, Wang X, Fang D, Hsiao B S and Chu B 2006 Polymer 47 2434

    Article  CAS  Google Scholar 

  2. Deitzel J M, Kleinmeyer J, Harris D and Beck Tan N C 2001 Polymer 42 261

    Article  CAS  Google Scholar 

  3. Yang S, Leong K F, Du Z and Chua C K 2002 Tissue Eng. 8 1

    Article  CAS  Google Scholar 

  4. Thavasi V, Singh G and Ramakrishna S 2008 Energy Environ. Sci. 1 205

    Article  CAS  Google Scholar 

  5. Tellis B C, Szivek J A, Bliss C L, Margolis D S, Vaidyanathan R K and Calvert P 2008 Mater. Sci. Eng. C 28 171

    Article  CAS  Google Scholar 

  6. Shin Y M, Hohman M M, Brenner M P and Rutledge G C 2001 Polymer 42 9955

    Article  CAS  Google Scholar 

  7. Theron S A, Zussman E and Yarin A L 2004 Polymer 45 2017

    Article  CAS  Google Scholar 

  8. Sun Z, Deitzel J M, Knopf J, Chen X and Gillespie Jr J W 2012 J. Appl. Polym. 125 2585

    Article  CAS  Google Scholar 

  9. Chen R, Morsi Y, Patel S, Ke Q and Mo X 2009 Front. Mater. Sci. China 3 359

    Article  CAS  Google Scholar 

  10. Thompson C J, Chase G G, Yarin A L and Reneker D H 2007 Polymer 48 6913

    Article  CAS  Google Scholar 

  11. Lam C X F, Mo X M, Teoh S H and Hutmacher D W 2002 Mater. Sci. Eng. C 20 49

    Article  Google Scholar 

  12. Li J L, Cai Y L, Guo Y L, Fuh J Y H, Sun J, Hong G S et al 2014 J. Biomed. Mater. Res. B 102B 651

    Article  CAS  Google Scholar 

  13. Ma Z, Kotaki M, Inai R and Ramakrishna S 2005 Tissue Eng. 11 101

    Article  Google Scholar 

  14. Nezarati R M, Eifert M B and Cosgriff-Hernandez E 2013 Tissue Eng. C 19 810

    Article  CAS  Google Scholar 

  15. Park S H, Kim T G, Kim H C, Yang D Y and Park T G 2008 Acta Biomater. 4 1198

    Article  CAS  Google Scholar 

  16. Owida A, Chen R, Patel S, Morsi Y and Mo X 2011 Rapid Prototyp. J. 17 37

    Article  Google Scholar 

  17. Sun B, Long Y Z, Zhang H D, Li M M and Duvail J L 2014 Prog. Polym. Sci. 39 862

    Article  CAS  Google Scholar 

  18. Edwards M D, Mitchell G R, Mohan S D and Olley R H 2010 Eur. Polym. J. 45 1175

    Article  Google Scholar 

  19. Zheng G, Li W, Wang X, Wu D, Sun D and Lin L 2010 J. Phys. D: Appl. Phys. 43 415501

    Article  Google Scholar 

  20. Sun D H, Chang C, Li S and Lin L 2006 Nano Lett. 6 839

    Article  CAS  Google Scholar 

  21. Bu N, Huang Y, Wang X and Yin Z 2012 Mater. Manuf. Process 27 1318

    Article  CAS  Google Scholar 

  22. Auyson K, Koomsap P, Chanthakulchan A and Supaphol P 2013 Proceedings of the 6th international conference on advanced research in virtual and rapid prototyping p 149

  23. Zheng G F, Sun L L, Wang X, Wei J, Xu L, Liu Y F et al 2016 Appl. Phys. A 122 1

    Google Scholar 

  24. Wei C and Dong J 2013 J. Micromech. Microeng. 23 025017

    Article  CAS  Google Scholar 

  25. Chanthakulchan A, Koomsap P, Auyson A and Supaphol P 2015 Rapid Prototyp. J. 21 329

    Article  Google Scholar 

  26. Parajuli D, Koomsap P, Parkhi A A and Supaphol P 2016 Virtual Phys. Prototyp. 11 193

    Article  Google Scholar 

  27. Chanthakulchan A, Koomsap P, Auyson A and Supaphol P 2015 Virtual Phys. Prototyp. 10 227

    Article  Google Scholar 

  28. Koombhongse S, Liu W and Reneker D H 2001 J. Polym. Sci.: Polym. Phys. 39 2598

    Article  CAS  Google Scholar 

  29. Bain S and Koomsap P 2016 Proceedings of the 2nd international conference on progress in additive manufacturing p 415

  30. Doshi J and Reneker D H 1995 J. Electrostat. 35 151

    Article  CAS  Google Scholar 

  31. Bisht G S, Canton G, Mirsepassi A, Kulinsky L, Oh S, Dunn-Rankin D et al 2011 Nano Lett. 11 1831

    Article  CAS  Google Scholar 

  32. Majumder S, Matin M A, Sharif A and Arafat M T 2019 Bull. Mater. Sci. 42 171

    Article  Google Scholar 

  33. Huang Z M, Zhang Y Z, Kotaki M and Ramakrishna S 2003 Compos. Sci. Technol. 63 2223

    Article  CAS  Google Scholar 

  34. Sukigara S, Gandhi M, Ayutsede J, Micklus M and Ko F 2003 Polymer 44 5721

    Article  CAS  Google Scholar 

  35. Tan S H, Inai R, Kotaki M and Ramakrishna S 2005 Polymer 46 6128

    Article  CAS  Google Scholar 

  36. Sill T J and Von Recum H A 2008 Biomaterials 29 1989

    Article  CAS  Google Scholar 

  37. Katti D S, Robinson K W, Ko F K and Laurencin C T 2004 J. Biomed. Mater. Res. 70B 286

    Article  CAS  Google Scholar 

  38. Gu S Y, Ren J and Vancso G J 2005 Eur. Polym. J. 41 2559

    Article  CAS  Google Scholar 

  39. Zhou Q H, Bao M, Yuan H H, Zhao S F, Dong W and Zhang Y Z 2013 Polymer 54 6867

    Article  CAS  Google Scholar 

  40. Son W K, Youk J H, Lee T S and Park W H 2004 Polymer 45 2959

    Article  CAS  Google Scholar 

  41. Lee K H, Kim H Y, Khil M S, Ra Y M and Lee D R 2003 Polymer 44 1287

    Article  CAS  Google Scholar 

  42. Luo C J, Stride E and Edirisinghe M 2012 Macromolecules 45 4669

    Article  CAS  Google Scholar 

  43. Wannatong L, Sirivat A and Supaphol P 2004 Polym. Int. 53 1851

    Article  CAS  Google Scholar 

  44. Padmanabhan T, Kamaraj V, Magwood Jr L and Starly B 2011 J. Manuf. Process. 13 104

    Article  Google Scholar 

  45. Hansen C M 2007 Hansen solubility parameters: a user’s handbook (Boca Raton, FL: CRC Press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pisut Koomsap.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bain, S., Koomsap, P. & Parajuli, D. Influence of solvents on a near-field electrospun straight fine fibre. Bull Mater Sci 44, 67 (2021). https://doi.org/10.1007/s12034-021-02359-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02359-9

Keywords

Navigation