Skip to main content
Log in

Effect of Al content on stacking fault energy in austenitic Fe–Mn–Al–C alloys

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Effect of Al content on the stacking fault energy (SFE) was investigated in the austenitic Fe–25Mn–(1.16–9.77)Al–0.68C (at%) alloys by X-ray diffraction line profile analysis and thermodynamic estimation, and was discussed on the basis of anomaly in shear modulus caused by the antiferromagnetic transition. The experimental results show that the stacking fault probability decreases with increasing Al content, the observed SFE increases linearly when Al content is lower than 6.27 at%, and markedly as it is more than 6.27 at%. The thermodynamic estimation indicates that the non-magnetic component of SFE increases faster than the observed one with increasing Al content in the antiferromagnetic state, and both are almost equal in the paramagnetic state. The magnetic order increases SFE in the antiferromagnetic state, and the magnetic component of SFE depends on the average magnetic moment and Néel temperature. The increases in the localized magnetic moment and the decrease in the Néel temperature are caused by the addition of Al atoms into the austenitic Fe–Mn alloys and are accompanied by the anomaly in shear modulus, which affects SFE in the antiferromagnetic state. The anomalous drop in shear modulus leads to the inconsistency for the variations of the observed SFE and non-magnetic component with Al content in the antiferromagnetic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ye CS (1977) Acta Metall Sin 13:149 (in Chinese)

    Google Scholar 

  2. Shih CH, Zhang YS et al (1984) Adv Cryog Eng Mater 31:161

    Article  Google Scholar 

  3. Zhang YS, Su LJ (1983) Acta Metall Sin 19:A253 (in Chinese)

  4. Zhang YS (1983) Acta Metall Sin 19:A262 (in Chinese)

  5. Brüx U, Frommeyer G, Gràssel O, Meyer LW, Weise A (2002) Steel Res 73:294

    Article  Google Scholar 

  6. Frommeyer G, Brüx U (2006) Steel Res 77:627

    Article  CAS  Google Scholar 

  7. Tian X, Zhang YS, Shih CH (1986) Acta Metall Sin 22:A101 (in Chinese)

    CAS  Google Scholar 

  8. Sato K, Ichinase M, Hirotsu Y, Inoue Y (1989) ISIJ Inter 29:868. doi:https://doi.org/10.2355/isijinternational.29.868

    Article  CAS  Google Scholar 

  9. Takaki S, Furuya T, Tokunaga Y (1990) ISIJ Inter 30:632. doi:https://doi.org/10.2355/isijinternational.30.632

    Article  CAS  Google Scholar 

  10. Tian X, Zhang YS (1993) Scr Metall Mater 28:1219. doi:https://doi.org/10.1016/0956-716X(93)90457-4

    Article  Google Scholar 

  11. Zhu XM, Zhang YS (1998) Corrosion 54:3

    Article  CAS  Google Scholar 

  12. Zhang YS, Lu X, Tian X, Qin ZX (2002) Mater Sci Eng A 334:19. doi:https://doi.org/10.1016/S0921-5093(01)01781-6

    Article  Google Scholar 

  13. Tian X, Tian R, Wei X, Zhang Y (2004) Can Metall Q 43:183

    Article  CAS  Google Scholar 

  14. Zhang YS (1985) Acta Metall Sin 21:A295 (in Chinese)

  15. Zhang YS (1986) Acta Metall Sin 22:A470 (in Chinese)

  16. Sato A, Yamaji Y, Mori T (1986) Acta Metall 34:287. doi:https://doi.org/10.1016/0001-6160(86)90199-9

    Article  CAS  Google Scholar 

  17. Yang JH, Chen H, Wayman CM (1992) Metall Trans 23A:1445

    Article  CAS  Google Scholar 

  18. Yang WS, Wan CM (1990) J Mater Sci 25:1821. doi:https://doi.org/10.1007/BF01045392

    Article  CAS  Google Scholar 

  19. Oh BW, Cho SJ, Kim YG et al (1995) Mater Sci Eng A 197:147. doi:https://doi.org/10.1016/0921-5093(94)09751-8

    Article  Google Scholar 

  20. Ruff AW Jr (1970) Metall Trans 1:2391

    Article  CAS  Google Scholar 

  21. Gallagher PCJ (1970) Metall Trans 1:2429

    Article  CAS  Google Scholar 

  22. Adler RPI, Otte HM, Wagner CNJ (1970) Metall Trans 1:2375

    Article  Google Scholar 

  23. Reed RP, Schramm RE (1974) J Appl Phys 45:4705. doi:https://doi.org/10.1063/1.1663122

    Article  CAS  Google Scholar 

  24. Schramm RE, Reed RP (1975) Metall Trans 6A:1345

    Article  CAS  Google Scholar 

  25. Mukherjee P, Sarkar A, Barat P et al (2004) Acta Mater 52:5687. doi:https://doi.org/10.1016/j.actamat.2004.08.030

    Article  CAS  Google Scholar 

  26. Kapoor K, Lahiri D et al (2005) Mater Charact 54:131. doi:https://doi.org/10.1016/j.matchar.2004.09.009

    Article  CAS  Google Scholar 

  27. Dey SN, Chatterjee P, Sen Gupta SP (2005) Acta Mater 53:4635. doi:https://doi.org/10.1016/j.actamat.2005.06.017

    Article  CAS  Google Scholar 

  28. Warren RE (1969) X-ray diffraction. Addison-Wesley, Reading, MA, p 251

  29. Hirth JP (1970) Metall Trans 1:2367. doi:https://doi.org/10.1007/BF02642816

    Article  Google Scholar 

  30. Miodowink AP (1978) Calphad 2:207. doi:https://doi.org/10.1016/0364-5916(78)90010-X

    Article  Google Scholar 

  31. Ferreira PJ, Müllner P (1998) Acta Mater 46:4479. doi:https://doi.org/10.1016/S1359-6454(98)00155-4

    Article  CAS  Google Scholar 

  32. Lee YK, Choi CS (2000) Metall Mater Trans 31A:355. doi:https://doi.org/10.1007/s11661-000-0271-3

    Article  CAS  Google Scholar 

  33. Olson GB, Cohen M (1976) Metall Trans 7A:1897

    CAS  Google Scholar 

  34. Ishida K (1976) Phys Stat Solids 36:717. doi:https://doi.org/10.1002/pssa.2210360233

    Article  CAS  Google Scholar 

  35. Hirllert M, Jar M (1978) Calphad 2:227. doi:https://doi.org/10.1016/0364-5916(78)90011-1

    Article  Google Scholar 

  36. Tian X, Zhang YS (1991) Mater Sci Prog 5:48 (in Chinese)

    Google Scholar 

  37. Stepakoff GL, Kaufman L (1968) Acta Metall 16:13. doi:https://doi.org/10.1016/0001-6160(68)90066-7

    Article  CAS  Google Scholar 

  38. Breedis JF, Kaufman L (1971) Metall Trans 2:2359. doi:https://doi.org/10.1007/BF02814874

    Article  CAS  Google Scholar 

  39. Kaufman L, Nesor H (1978) Calphad 2:295. doi:https://doi.org/10.1016/0364-5916(78)90018-4

    Article  CAS  Google Scholar 

  40. Murr LE (1975) Interfacial phenomenon in metal and alloys. Addison-Wesley, Reading, MA, p 130

  41. Ericsson T (1969) Acta Metall 14:1073. doi:https://doi.org/10.1016/0001-6160(66)90195-7

    Article  Google Scholar 

  42. Ishida K, Nishizawa T (1974) Trans Jpn Inst Met 15:225

    Article  Google Scholar 

  43. Fernández Guillerment A (1987) High Temp High Press 19:477

    Google Scholar 

  44. Petrov Yu N, Yakubtsov IA (1986) Phys Met Metall 62(2):34

    Google Scholar 

  45. Ohno H, Mekata M (1971) J Phys Soc Jpn 31:102. doi:https://doi.org/10.1143/JPSJ.31.102

    Article  CAS  Google Scholar 

  46. Zhang YS (1988) J Phys Met Phys 18:L229

    Article  CAS  Google Scholar 

  47. Qin ZX, Zhang YS (1998) Hyperfine Interact 116:225. doi:https://doi.org/10.1023/A:1012670705310

    Article  CAS  Google Scholar 

  48. Remy L, Pineau A (1977) Mater Sci Eng 28:99. doi:https://doi.org/10.1016/0025-5416(77)90093-3

    Article  CAS  Google Scholar 

  49. Umebayashi H, Ishikawa Y (1966) J Phys Soc Jpn 21:1281. doi:https://doi.org/10.1143/JPSJ.21.1281

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Professor Shuzhi LIN for his valuable help in the XRD testing and for the profitable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, X., Li, H. & Zhang, Y. Effect of Al content on stacking fault energy in austenitic Fe–Mn–Al–C alloys. J Mater Sci 43, 6214–6222 (2008). https://doi.org/10.1007/s10853-008-2919-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2919-0

Keywords

Navigation