Skip to main content
Log in

First-Principles Study on Stacking Fault Energy of γ-Fe–Mn Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The ground state properties and generalized stacking fault energy (GSFE) of γ-Fe–Mn alloys with different Mn concentrations are calculated by ab initio simulation. The calculation results of intrinsic stacking fault energies (ISFE) show that Mn atoms have a significant short-range effect on the ISFE; the parabolic relationship between ISFE and Mn atom concentration of antiferromagnetic (AFM) Fe–Mn alloys is explained by the cohesive energy and density of states (DOS) of the alloys. AFM increases ISFE of γ-Fe–Mn alloys compared to non-magnetic (NM). The importance of considering magnetic interactions in ISFE of γ-Fe–Mn alloys is proven and it is very significant to study the deformation behavior of medium manganese steel.

Graphic Abstract

We have investigated the stacking fault energy of antiferromagnetic γ-Fe–Mn alloys and proved that that magnetism has an important influence on stacking fault energy in γ-Fe–Mn alloys. We have confirmed the parabolic relationship between ISFE and Mn atom concentration of AFM-Fe–Mn alloys can be explained by the cohesive energy and DOS of the alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.L. Miller, Ultrafine-grained microstructures and mechanical properties of alloy steels. Metall. Mater. Trans. B 3, 905–912 (1972)

    CAS  Google Scholar 

  2. S. Lee, K. Lee, B.C. De Cooman, Observation of the TWIP + TRIP plasticity-enhancement mechanism in Al-added 6 WWt Pct medium Mn steel. Metall. Mater. Trans. A 46, 2356–2363 (2015)

    CAS  Google Scholar 

  3. M.I. Latypov, S. Shin, B.C. De Cooman, H.S. Kim, Micromechanical finite element analysis of strain partitioning in multiphase medium manganese TWIP + TRIP steel. Acta Mater. 108, 219–228 (2016)

    CAS  Google Scholar 

  4. J. Han, A.K. da Silva, D. Ponge, D. Raabe, S.-M. Lee, Y.-K. Lee, S.-I. Lee, B. Hwang, The effects of prior austenite grain boundaries and microstructural morphology on the impact toughness of intercritically annealed medium Mn steel. Acta Mater. 122, 199–206 (2017)

    CAS  Google Scholar 

  5. M. Kuzmina, M. Herbig, D. Ponge, S. Sandlobes, D. Raabe, Linear complexions: confined chemical and structural states at dislocations. Science 349, 1080–1083 (2015)

    CAS  Google Scholar 

  6. Z.C. Li, H. Ding, Z.H. Cai, Mechanical properties and austenite stability in hot-rolled 0.2C–1.6/3.2Al–6Mn–Fe TRIP steel. Mater. Sci. Eng. A. 639, 559–566 (2015)

    CAS  Google Scholar 

  7. M.-M. Wang, C.C. Tasan, D. Ponge, A-Ch. Dippel, D. Raabe, Nanolaminate transformation-induced plasticity–twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance. Acta Mater. 85, 216–228 (2015)

    CAS  Google Scholar 

  8. P.J. Gibbs, B.C. De Cooman, D.W. Brown, B. Clausen, J.G. Schroth, M.J. Merwin, D.K. Matlock, Strain partitioning in ultra-fine grained medium-manganese transformation induced plasticity steel. Mater. Sci. Eng. A 609, 323–333 (2014)

    CAS  Google Scholar 

  9. Z.C. Li, H. Ding, R.D.K. Misra, Z.H. Cai, Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands. Mater. Sci. Eng. A 679, 230–239 (2017)

    CAS  Google Scholar 

  10. K. Sugimoto, M. Misu, M. Kobayashi, H. Shirasawa, Effects of second phase morphology on retained austenite morphology and tensile properties in a TRIP-aided dual-phase steel sheet. ISIJ Int. 33, 775–782 (1993)

    CAS  Google Scholar 

  11. S.J. Lee, S. Lee, B.C. De Cooman, Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel. Scr. Mater. 64, 649–652 (2011)

    CAS  Google Scholar 

  12. T. Furukawa, H. Huang, O. Matsumura, Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity. Mater. Sci. Technol. 10, 964–970 (1994)

    CAS  Google Scholar 

  13. J.Y. Choi, S.W. Hwang, K.-T. Park, Twinning-induced plasticity aided high ductile duplex stainless steel. Metall. Mater. Trans. A 44, 597–601 (2013)

    CAS  Google Scholar 

  14. G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 43, 438–446 (2003)

    CAS  Google Scholar 

  15. 吝章国, 陈家泳, 唐荻, 江海涛, 段晓鸽, 基于层错能的中锰Q&P钢变形机制研究, 华南理工大学学报 自然科学版.353, 146–152 (2016)

  16. M. Jo, Y.M. Koo, S.K. Kwon, Determination of the deformation mechanism of Fe–Mn alloys. Met. Mater. Int. 21, 227–231 (2015)

    CAS  Google Scholar 

  17. S. Lee, B.C.D. Cooman, Tensile behavior of intercritically annealed 10 pct Mn multi-phase steel. Metall. Mater. Trans. A 45A, 709–716 (2013)

    Google Scholar 

  18. V.I. Razumovskiy, A. Reyes-Huamantinco, P. Puschnig, A.V. Ruban, Effect of thermal lattice expansion on the stacking fault energies of fcc Fe and Fe75Mn25 alloy. Phys. Rev. B Condens. Matter. 93, 054111 (2016)

    Google Scholar 

  19. Y.-K. Lee, C. Choi, Driving force for γ → ε martensitic transformation and stacking fault energy of γ in Fe–Mn binary system. Metall. Mater. Trans. A 31, 355–360 (2000)

    Google Scholar 

  20. P.Y. Volosevich, V.N. Gridnev, Y.N. Petrov, Carbon effect on austenite stacking faults energy in manganese steels. Phys. Met. Metallogr. 42, 126 (1976)

    Google Scholar 

  21. H. Schumann, Einfluß der Stapelfehlerenergie auf den kristallographischen Umgitterungsmechanismus der γ/α-Umwandlung in hochlegierten Stählen. Krist. Tech. 9, 1141–1152 (1974)

    CAS  Google Scholar 

  22. J. Nakano, P.J. Jacques, Effects of the thermodynamic parameters of the hcp phase on the stacking fault energy calculations in the Fe–Mn and Fe–Mn–C systems. Calphad 34, 167–175 (2010)

    CAS  Google Scholar 

  23. A. Dick, T. Hickel, J. Neugebauer, The effect of disorder on the concentration-dependence of stacking fault energies in Fe1−xMnx—a First Principles Study. Steel Res. Int. 80, 603–608 (2009)

    CAS  Google Scholar 

  24. N.I. Medvedeva, M.S. Park, D.C. Van Aken, J.E. Medvedeva, First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. J. Alloys Compd. 582, 475–482 (2014)

    CAS  Google Scholar 

  25. Z. Dong, S. Schönecker, D. Chen, W. Li, L. Song, L. Vitos, Influence of Mn content on the intrinsic energy barriers of paramagnetic FeMn alloys from longitudinal spin fluctuation theory. Int. J. Plast. 119, 123–139 (2019)

    CAS  Google Scholar 

  26. I. Bleskov, T. Hickel, J. Neugebauer, A. Ruban, Impact of local magnetism on stacking fault energies: a first-principles investigation for fcc iron. Phys. Rev. B 93, 214115 (2016)

    Google Scholar 

  27. K.E. Szklarz, M.L. Wayman, The effects of ferromagnetism on intergranular segregation in iron. Acta Metall. 29, 341–349 (1981)

    CAS  Google Scholar 

  28. W. Zhang, Phonon softening by magnetic moment in γ-Fe. J. Magn. Magn. Mater. 323, 2206–2209 (2011)

    CAS  Google Scholar 

  29. S. Lu, Q.-M. Hu, B. Johansson, L. Vitos, Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels. Acta Mater. 59, 5728–5734 (2011)

    CAS  Google Scholar 

  30. L. Vitos, P.A. Korzhavyi, B. Johansson, Evidence of large magnetostructural effects in austenitic stainless steels. Phys. Rev. Lett. 96, 117210 (2006)

    CAS  Google Scholar 

  31. D.W. Boukhvalov, Y.N. Gornostyrev, M.I. Katsnelson, A.I. Lichtenstein, Magnetism and local distortions near carbon impurity in γ-iron. Phys. Rev. Lett. 99, 247205 (2007)

    CAS  Google Scholar 

  32. N. Medvedeva, D. Van Aken, J. Medvedeva, Magnetism in bcc and fcc Fe with carbon and manganese. J. Phys. Condens. Matter Inst. Phys. J. 22, 316002 (2010)

    CAS  Google Scholar 

  33. T. Gebhardt, D. Music, B. Hallstedt, M. Ekholm, I.A. Abrikosov, L. Vitos, J.M. Schneider, Ab initio lattice stability of fcc and hcp Fe–Mn random alloys. J. Phys. Condens. Matter 22, 295402 (2010)

    CAS  Google Scholar 

  34. Y. Ishikawa, Y. Endoh, Antiferromagnetism of γ-FeMn Alloys. II. Neutron diffraction and Mössbauer effect studies. J. Phys. Soc. Jpn. 23, 205 (1967)

    CAS  Google Scholar 

  35. Y. Endoh, Y. Ishikawa, Antiferromagnetism of γ iron manganes alloys. J. Phys. Soc. Jpn. 30, 1614–1627 (1971)

    CAS  Google Scholar 

  36. G. Kresse, J. Hafner, Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B Condens. Matter 48, 13115–13118 (1993)

    CAS  Google Scholar 

  37. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996)

    CAS  Google Scholar 

  38. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994)

    Google Scholar 

  39. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    CAS  Google Scholar 

  40. H.C. Herper, E. Hoffmann, P. Entel, Ab initio full-potential study of the structural and magnetic phase stability of iron. Phys. Rev. B. 60, 3839–3848 (1999)

    CAS  Google Scholar 

  41. D.E. Jiang, E.A. Carter, Carbon dissolution and diffusion in ferrite and austenite from first principles. Phys. Rev. B. 67, 214103 (2003)

    Google Scholar 

  42. R. Yu, X. Chong, Y. Jiang, R. Zhou, W. Yuan, J. Feng, The stability, electronic structure, elastic and metallic properties of manganese nitrides. RSC Adv. 5, 1620–1627 (2014)

    Google Scholar 

  43. Y. Petrov, Effect of carbon and nitrogen on the stacking fault energy of high-alloyed iron-based austenite. Z. Für Met. 94, 1012–1016 (2003)

    CAS  Google Scholar 

  44. I.A. Yakubtsov, A. Ariapour, D.D. Perovic, Effect of nitrogen on stacking fault energy of fcc iron-based alloys. Acta Mater. 47, 1271–1279 (1999)

    CAS  Google Scholar 

  45. Q.M. Hu, R. Yang, D.S. Xu, Y.L. Hao, D. Li, W.T. Wu, Energetics and electronic structure of grain boundaries and surfaces of B- and H-doped Ni3Al. Phys. Rev. B 67, 224203 (2003)

    Google Scholar 

  46. H.B. Yu, W.H. Wang, H.Y. Bai, An electronic structure perspective on glass-forming ability in metallic glasses. Appl. Phys. Lett. 96, 081902 (2010)

    Google Scholar 

  47. T. Gebhardt, D. Music, M. Ekholm, I.A. Abrikosov, J. von Appen, R. Dronskowski, D. Wagner, J. Mayer, J.M. Schneider, Influence of chemical composition and magnetic effects on the elastic properties of fcc Fe–Mn alloys. Acta Mater. 59, 1493–1501 (2011)

    CAS  Google Scholar 

  48. P. Ravindran, L. Fast, P.A. Korzhavyi, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. J. Appl. Phys. 84, 4891–4904 (1998)

    CAS  Google Scholar 

  49. V.N. Antonov, O. Jepsen, A.N. Yaresko, A.P. Shpak, Electronic structure and x-ray magnetic circular dichroism in the Heusler alloy Co2MnGe. J. Appl. Phys. 100, 043711 (2006)

    Google Scholar 

  50. A. Abbasi, A. Dick, T. Hickel, J. Neugebauer, First-principles investigation of the effect of carbon on the stacking fault energy of Fe–C alloys. Acta Mater. 59, 3041–3048 (2011)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zu, W., Wang, H. et al. First-Principles Study on Stacking Fault Energy of γ-Fe–Mn Alloys. Met. Mater. Int. 27, 3205–3213 (2021). https://doi.org/10.1007/s12540-020-00821-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00821-7

Keywords

Navigation