Skip to main content
Log in

The hydrothermal analogy role of ionic liquid in transforming amorphous TiO2 to anatase TiO2: elucidating effects of ionic liquids and heating method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the specific coexistence of water and ionic liquid being the lower temperature thermal annealing condition for anatase crystallization of amorphous titania at ambient pressure was found. The test ionic liquids were 1-butyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium tetrafluoroborate. After deep investigation, we found that there existed an analogy between our lower temperature thermal annealing treatment system (LTTAT) and hydrothermal treatment system. In LTTAT system, the ionic liquid played an important role in driving surface crystallization of amorphous TiO2 to the anatase phase by retaining a suitable amount of water through a dissolution–crystallization mechanism. We could observe higher hydroxyl group ratio of hydroxylated titanium compound from X-ray photoelectron spectroscopy (XPS) data during initial thermal annealing period. The self-assembly ability of ionic liquid then lead to kinetical dehydration and crystallization of hydroxylated titanium compound around it during the following annealing process. Based upon this proposition, the effects of different types of ionic liquid and its amount, temperature effect, and heating method on anatase crystallinity, characterized by X-ray diffraction (XRD), were investigated. It was found that different temperatures and microwave heating effect were observed for different types of ionic liquid. From these observations, it was pointed out that we could get better anatase crystallinity and good photodegradation performance by using the system containing ionic liquid having higher water-adsorbing ability and microwave heating annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burnside SD, Shklover V, Barbě C, Comte P, Arendse F, Brooks K, Grãtzel M (1998) Chem Mater 10:2419. doi:https://doi.org/10.1021/cm980702b

    Article  CAS  Google Scholar 

  2. Chiappe C, Pieraccini D (2005) J Phys Org Chem 18:275. doi:https://doi.org/10.1002/poc.863

    Article  CAS  Google Scholar 

  3. Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Angew Chem Int Ed 43:4988. doi:https://doi.org/10.1002/anie.200460091

    Article  CAS  Google Scholar 

  4. Zhou Y (2005) Curr Nanosci 1:35. doi:https://doi.org/10.2174/1573413052953174

    Article  CAS  Google Scholar 

  5. Jiang J, Yu S, Tao W, Ge H, Zhang G (2005) Chem Mater 17:6094. doi:https://doi.org/10.1021/cm051632t

    Article  CAS  Google Scholar 

  6. Zhou Y, Antonietti M (2003) J Am Chem Soc 125:14960. doi:https://doi.org/10.1021/ja0380998

    Article  CAS  Google Scholar 

  7. Nakashima T, Kimizuka N (2003) J Am Chem Soc 125:6386. doi:https://doi.org/10.1021/ja034954b

    Article  CAS  Google Scholar 

  8. Yoo KS, Choi H, Dionysiou D (2004) Chem Commun 17:2000–2001. doi:https://doi.org/10.1039/b406040g

    Article  Google Scholar 

  9. Yoo KS, Choi H, Dionysiou D (2005) Catal Commun 6:259. doi:https://doi.org/10.1016/j.catcom.2005.01.010

    Article  CAS  Google Scholar 

  10. Yoo KS, Lee TG, Kim J (2005) Microporous Mesoporous Mater 84:211–217. doi:https://doi.org/10.1016/j.micromeso.2005.05.029

    Article  CAS  Google Scholar 

  11. Galema SA (1997) Chem Soc Rev 26:233. doi:https://doi.org/10.1039/cs9972600233

    Article  CAS  Google Scholar 

  12. Hart JN, Cervini R, Cheng YB, Simon GP, Spiccia L (2004) Sol Energy Mater Sol Cells 84:135. doi:https://doi.org/10.1016/j.solmat.2004.02.041

    Article  CAS  Google Scholar 

  13. Choi H, Kim YJ, Varma RS, Dionysiou D (2006) Chem Mater 18:5377. doi:https://doi.org/10.1021/cm0615626

    Article  CAS  Google Scholar 

  14. Liu Y, Li J, Wang M, Li Z, Liu H, Yang PHX, Li J (2005) Cryst Growth Des 5:1643. doi:https://doi.org/10.1021/cg050017z

    Article  CAS  Google Scholar 

  15. Liu YH, Lin CW, Chang MC, Shao H, Yang ACM (2007) (Europacat VIII) 26–31 August 2007 Turku / Åbo, Finland

  16. Dominguez-Vidal A, Kaun N, Ayora-Caňada MJ, Lendl B (2007) J Phys Chem B 111:4446. doi:https://doi.org/10.1021/jp068777n

    Article  CAS  Google Scholar 

  17. Katayanagi A, Nishikawa K, Shimozaki H, Miki K, Westh P, Koga Y (2004) J Phys Chem B 108:19451. doi:https://doi.org/10.1021/jp0477607

    Article  CAS  Google Scholar 

  18. Salou M, Kiyozumi Y, Mizukami F, Nair P, Maeda K, Niwa S (1998) J Mater Chem 8:2125. doi:https://doi.org/10.1039/a803085e

    Article  CAS  Google Scholar 

  19. Yanagisawa K, Yamamoto Y, Feng Q, Yamasaki N (1998) J Mater Res 13:825. doi:https://doi.org/10.1557/JMR.1998.0106

    Article  CAS  Google Scholar 

  20. Yu J, Wang G, Chemg B, Zhou M (2007) Appl Catal B 69:171

    Article  CAS  Google Scholar 

  21. Pouilleau J, Devilliers D, Groult H (1997) J Mater Sci 32:5645. doi:https://doi.org/10.1023/A:1018645112465

    Article  CAS  Google Scholar 

  22. Shin H, Jung HS, Hong KS, Lee JK (2005) J Solid State Chem 178:15. doi:https://doi.org/10.1016/j.jssc.2004.09.035

    Article  CAS  Google Scholar 

  23. Cooper ER, Andrews CD, Wheatley PS, Webb PB, Wormald P, Morris RE (2004) Nature 430:1012. doi:https://doi.org/10.1038/nature02860

    Article  CAS  Google Scholar 

  24. Tran CD, Paolilacedra SHD, Oliverira D (2003) Appl Spectrosc 57:152. doi:https://doi.org/10.1366/000370203321535051

    Article  CAS  Google Scholar 

  25. Wang Y, Li H, Han S (2006) J Phys Chem B 110:24646. doi:https://doi.org/10.1021/jp064134w

    Article  CAS  Google Scholar 

  26. Liu W, Zhao T, Zhang Y, Wang H, Yu M (2006) J Solut Chem 35:1337. doi:https://doi.org/10.1007/s10953-006-9064-7

    Article  Google Scholar 

  27. Tompsett GA, Conner WC, Yngvesson KS (2006) ChemPhysChem 7:296. doi:https://doi.org/10.1002/cphc.200500449

    Article  CAS  Google Scholar 

  28. Komarneni S (2003) Curr Sci 85:1730

    CAS  Google Scholar 

  29. Wilson GJ, Will GD, Frost RL, Montgomery SA (2002) J Mater Chem 12:1787

    Article  CAS  Google Scholar 

  30. Murrugan AV, Samuel V, Ravi V (2006) Mater Lett 60:479. doi:https://doi.org/10.1016/j.matlet.2005.09.017

    Article  Google Scholar 

  31. Xu Y, Tian Z, Wang S, Hu Y, Wang L, Ma Y, Hou L, Yu J, Lin L (2006) Angew Chem Int Ed 45:3965. doi:https://doi.org/10.1002/anie.200600054

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ministry of Economic affair (MOEA) of Taiwan for funding support. A complementary financial support from National Science Council of Taiwan is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Chao Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y.H., Lin, C.W., Chang, M.C. et al. The hydrothermal analogy role of ionic liquid in transforming amorphous TiO2 to anatase TiO2: elucidating effects of ionic liquids and heating method. J Mater Sci 43, 5005–5013 (2008). https://doi.org/10.1007/s10853-008-2740-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-008-2740-9

Keywords

Navigation