Skip to main content
Log in

Kinetics of anatase phase transformation of TiO2 NPs synthesized using controlled hydrolysis technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thermal kinetics of TiO2 NPs at varying time and at different temperatures for anatase–rutile phase transition was investigated by Powder XRD diffraction analysis. Decrease in the diffraction intensities of XRD peaks of anatase phase (101) was observed from 900 °C onwards, which substantiates the evolution of rutile phase. Isothermal curves of transformed rutile mass fraction as a function of varying time were investigated at 925 °C and 950 °C and the data were fitted using Johnson–Mehl–Avrami equation. Thermal behavior of nanostructured TiO2 was characterized using thermogravimetry and differential analyses. In addition, specific heat capacities of the synthesized TiO2 NPs at higher temperature range were reported. By recapitulating the results, we indicate that TiO2 NPs synthesized by controlled hydrolysis technique prolongs the transition state and it can be concluded that interfacial nucleation and growth site improvements are accomplished by activation energy. Activation energy calculated for varying time derivatives was found to be 39 kcal/mol, 64 kcal/mol and 175 kcal/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.R. Forrest, Nature 428, 911–918 (2004)

    Article  ADS  Google Scholar 

  2. H.H. Park, Y. Choi, D.J. Park, S.Y. Cho, Y.S. Yun, H.J. Jin, Fibers Polym. 14, 1521–1525 (2013)

    Article  Google Scholar 

  3. J. Park, J. Kim, S. Lee, J. Bang, B.J. Kim, Y.S. Kim, J. Cho, J. Mater. Chem. 19, 4488–4490 (2009)

    Article  Google Scholar 

  4. G. Ramis, G. Busca, F. Bregani, Catal. Lett. 18, 299–303 (1993)

    Article  Google Scholar 

  5. M. Gratzel, Nature 414, 338–344 (2001)

    Article  ADS  Google Scholar 

  6. A. Hagfeldt, M. Gratzel, Chem. Rev. 95, 49–68 (1995)

    Article  Google Scholar 

  7. A. Mills, S.K. Lee, J. Photochem. Photobiol. A 152, 233–247 (2002)

    Article  Google Scholar 

  8. H. Zhang, J.F. Banfield, J. Phys. Chem. B 104, 3481–3487 (2003)

    Article  Google Scholar 

  9. H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7, 663–671 (1995)

    Article  Google Scholar 

  10. J. Yang, S. Mei, J.M.F. Ferreira, J. Am. Ceram. Soc. 83, 1361–1368 (2000)

    Article  Google Scholar 

  11. S. Valencia, X. Vargas, L. Rios, G. Restrepo, J.M. Mar´ın, J. Photochem. Photobiol. A Chem. 251, 175–181 (2013)

    Article  Google Scholar 

  12. N.M. Julkapli, S. Bagheri, S.B. Abd, Hamid, Sci. World J. 2014, 1–25 (2014)

    Article  Google Scholar 

  13. V. Ghorbani, M. Ghanipour, D. Dorranian, Opt. Quantum Electron. 48, 1–14 (2016)

    Article  Google Scholar 

  14. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 49, 1–14 (2004)

    Article  Google Scholar 

  15. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, Renew. Sustain. Energy Rev. 11, 401–425 (2007)

    Article  Google Scholar 

  16. A. Millis, S. Le Hunte, J. Photochem. Photobiol. A 108, 1–35 (1997)

    Article  Google Scholar 

  17. G. Madras, J. Am. Ceram. Soc. 90, 250–255 (2007)

    Article  Google Scholar 

  18. A. Dabler, A. Feltz, J. Jung, W. Ludwig, E. Kaiserberg, J. Therm. Anal. Calorim. 33, 803–809 (1988)

    Article  Google Scholar 

  19. H. Ichinose, M. Terasaki, H. Katsuki, J. Ceram. Soc. Jpn. 104, 715–718 (1996)

    Article  Google Scholar 

  20. C.N. Rao, S.R. Yoganarasimha, P.A. Faeth, Trans. Faraday Soc. 57, 504–510 (1961)

    Article  Google Scholar 

  21. N.T. Nolan, M.K. Seery, S.C. Pillai, J. Phys. Chem. C 113, 16151–16157 (2009)

    Article  Google Scholar 

  22. M. Kakihana, M. Kobayashi, K. Tomita, V. Petrykin, Bull. Chem. Soc. Jpn. 83, 1285–1308 (2010)

    Article  Google Scholar 

  23. N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno, J. Phys. Chem. C 113, 3062–3069 (2009)

    Article  Google Scholar 

  24. W. Li, Y. Bai, C. Liu, Z. Yang, X. Feng, X. Lu, N.K. Van der Laakand, K.Y. Chan, Environ. Sci. Technol. 43, 5423–5428 (2009)

    Article  ADS  Google Scholar 

  25. J.Y. Piquemal, E. Briot, J.M. Bregeault, Dalton Trans. 42, 29–45 (2013)

    Article  Google Scholar 

  26. M. Palkovaska, V. Slovak, J. Subrt, J. Bohacek, Z. Barbierikova, V. Brezova, R. Fajgar, J. Therm. Anal. Calorim. 125, 1071–1078 (2016)

    Article  Google Scholar 

  27. F.C. Gennari, D.M. Pasquevich, J. Mater. Sci. 33, 1571–1578 (1998)

    Article  ADS  Google Scholar 

  28. B.-K. Yoo, W. Oh-Hoon Kwon, H. Liu, J. Tang, A.H. Zewail, Nat. Commun. 6, 86391–86396 (2015)

    Google Scholar 

  29. H. Mehranpour, M. Askari, M. Sasani, Ghamsari, H. Farzalibeik, J. Nanomater. 2010, 5 (2010)

    Article  Google Scholar 

  30. J. Pagáčová, A. Plško, K. Michalková, V. Zemanová, I. Papučová, Procedia Eng. 136, 280–286 (2016)

    Article  Google Scholar 

  31. G. Li, L. Li, J. Boerio-Goates, B.F. Woodfield, J. Am. Chem. Soc. 127, 8659–8666 (2005)

    Article  Google Scholar 

  32. J. Malek, T. Mitsuhashi, J. Am. Ceram. Soc. 83, 2103–2105 (2000)

    Article  Google Scholar 

  33. N. Nakayama, T. Hayashi, Colloids Surf. A Physicochem. Eng. Asp. 317, 543–550 (2008)

    Article  Google Scholar 

  34. M. Mazhar, M.A. Ehsan, H. Khaledi, A. Pandikumar, P. Rameshkumar, H.N. Ming, Z. Arifin, New J. Chem. 39, 7442–7452 (2015)

    Article  Google Scholar 

  35. P. Piątkowski Jarosław, R.J. Magda, Solid State Phenomen. 203, 431–434 (2013)

    Article  Google Scholar 

  36. C. Marinescu, A. Sofronia, C. Rust, J. Therm. Anal. Calorim. 103, 49–57 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaiarasi, S., Jose, M. Kinetics of anatase phase transformation of TiO2 NPs synthesized using controlled hydrolysis technique. Appl. Phys. A 124, 589 (2018). https://doi.org/10.1007/s00339-018-2021-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2021-7

Navigation