Journal of Materials Science

, Volume 43, Issue 5, pp 1576–1582 | Cite as

Adiabatic shear band in a Ti-3Al-5Mo-4.5V Titanium alloy

  • B. F. WangEmail author


An investigation has been carried out on the adiabatic shear band (ASB) in a Ti-3Al-5Mo-4.5V (TC16) alloy deformed at high strain rate by a split Hopkinson pressure bar (SHPB). ASB in TC16 alloy is a “white” band with a width of about 13 μm. Microhardness of the ASB is larger than that of the matrix. The elongated cell structures of width about 0.2–0.5 μm with thick dislocation exist in the boundary of the shear band. Results suggest that the fine equiaxed grains with α-phase and α″-phase coexist in the shear band. The “white” band is a transformation band. Calculation of the adiabatic temperature rise indicates that the maximum temperature within ASB is about 1,069 K that is above the phase transformation temperature. Finally, formation of an ASB in the TC16 alloy and its microstructure evolution are described.


Shear Band True Strain Adiabatic Shear Adiabatic Shear Band TC16 Alloy 



This work was financially supported by the National Nature Science Foundation of China, No. 50471059 and No. 50671121.


  1. 1.
    Bai YL (1990) Res Mech 31:133Google Scholar
  2. 2.
    Meyers MA, Park HR (1986) Acta Metall 34:2493CrossRefGoogle Scholar
  3. 3.
    Yang Y, Zhang XM, Li ZH (1996) Acta Mater 44:561CrossRefGoogle Scholar
  4. 4.
    Xue Q, Meyers MA, Nesterenko VF (2002) Acta Mater 50:575CrossRefGoogle Scholar
  5. 5.
    Bophcoba EA (1986) Metallography of titanium alloy. National Defence Industry Press, Beijing, p 326Google Scholar
  6. 6.
    Zong YY, Shan DB, Lu Y (2006) J Mater sci 41:3753. doi: CrossRefGoogle Scholar
  7. 7.
    Hung F-Y, Lui T-S (2005) J Mater Sci 40:3683. doi: CrossRefGoogle Scholar
  8. 8.
    Wang R, Yang GY, Wu BX, Fu BW, Zhan YC, Zhang YH (1991) Proceedings of SPIE—The International Society for Optical Engineering, vol 1519, p 146Google Scholar
  9. 9.
    Rusakov GM, Litvinov AV (2002) Fiz Met Metalloved 93:17Google Scholar
  10. 10.
    Meyer LW, Manwarig S (1986) In: Murr LE, Staudhammer KP, Meyers MA (eds) Metallurgical applications of shock-wave and high-strain—Rate Phenomena. Marcel Dekker, New York, p 657Google Scholar
  11. 11.
    Andrade U, Meyers MA (1994) Acta Mater 42:3183CrossRefGoogle Scholar
  12. 12.
    Culver RS (1973) In: Rohde RW, Butcher BM, Holland JR (eds) Metallurgical effects at high strain rates. Plenum Press, New York, p 519Google Scholar
  13. 13.
    Hines JA, Vecchio KS (1997) Acta Metall Mater 45:635CrossRefGoogle Scholar
  14. 14.
    Li Q, Xu YB, Lai ZH, Shen LT, Bai YL (2000) Mater Sci Eng A276:250CrossRefGoogle Scholar
  15. 15.
    Timothy SP, Hutchings IM (1985) Acta Metall 33:667CrossRefGoogle Scholar
  16. 16.
    Bayoumi AE, Xie JQ (1995) Mater Sci Eng A190:173CrossRefGoogle Scholar
  17. 17.
    Grebe HA, Pak HR (1985) Metall Trans 16A:761CrossRefGoogle Scholar
  18. 18.
    Meyers MA, Subhash G, Kad BK, Prasad L (1994) Mech Mater 17:175CrossRefGoogle Scholar
  19. 19.
    Meyers MA, Xu YB, Xue Q et al (2003) Acta Mater 51:1307CrossRefGoogle Scholar
  20. 20.
    Zhang XY, Zhao YQ, Bai CG (2005) Titanium alloy and its application. Chemical Industry Press, Beijing, p 86Google Scholar
  21. 21.
    Yang Y, Wang BF (2006) J Mater Sci 41:7387. doi: CrossRefGoogle Scholar
  22. 22.
    Kad BK, Gebert J-M, Perez-Prado MT, Kassner ME, Meyers MA (2006) Acta Mater 54:4111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations