Skip to main content
Log in

Room-Temperature Compressive Deformation Behavior of High-Strength Ti-15V-3Al-3Cr-3Sn-1Nb-1Zr Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The characteristics of room-temperature compressive deformation of a new high-strength metastable beta titanium alloy Ti-15V-3Al-3Cr-3Sn-1Nb-1Zr (Ti-26) were investigated using the Gleeble-3800 thermo-mechanical simulator at strain rates of 0.001~0.1 S−1 and height reductions of 20–60%. The results show that discontinuous yielding appears at a strain rate of 0.1 S−1 and a height reduction of 60% from 0.06 true strain to 0.12 true strain. The yield strength was found to be sensitive to the strain rate (0.001~0.1 S−1), while the ultimate strength was just the opposite, but higher strain rates produce a discontinuous yielding phenomenon. With increasing height reductions and strain rates, the initially equiaxial grains evolve into fibrous grains and the larger the height reductions and strain rates are, the more significant the elongation of the beta grains is. For small height reductions, the dominant deformation mechanisms are dislocation slip ({110}〈111〉 slip system) and twinning deformation ({332}〈113〉 twinning system); the grain rotation during the twining deformation process can adjust the crystallographic orientation, relieving stress concentration and stimulating additional slip. At large height reductions, the minor volume fraction of twins are completely engulfed by slip lines, and the dominant deformation mechanism changes to dislocation slip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P.E. Markovsky, V.I. Bondarchuk, and O.M. Herasymchuk, Influence of Grain Size, Aging Conditions and Tension Rate on the Mechanical Behavior of Titanium Low-cost Metastable Beta-alloy in Thermally Hardened Condition, Mater. Sci. Eng. A, 2015, 645, p 150–162

    Article  Google Scholar 

  2. K. Hua, X.Y. Xue, H.C. Kou, J.K. Fan, B. Tang, and J.S. Li, Characterization of Hot Deformation Microstructure of a Near Beta Titanium Alloy Ti-5553, J. Alloy. Compd., 2014, 615, p 531–537

    Article  Google Scholar 

  3. H. Schwab, F. Palmb, U. Kühn, and J. Eckert, Microstructure and Mechanical Properties of the Near-beta Titanium Alloy Ti-5553 Processed by Selective Laser Melting, Mater. Des., 2016, 105, p 75–80

    Article  Google Scholar 

  4. R.R. Boyer and R.D. Briggs, The Use of β Titanium Alloys in the Aerospace Industry, J. Mater. Eng. Perform., 2005, 14(6), p 681–685

    Article  Google Scholar 

  5. Y.W. Zhang, D. Kent, G. Wang, D.S. John, and M. Dargusch, An Investigation of the Mechanical Behaviour of Fine Tubes Fabricated from a Ti-25Nb-3Mo-3Zr-2Sn Alloy, Mater. Des., 2015, 85, p 256–265

    Article  Google Scholar 

  6. H.P. Ng, E. Douguet, C.J. Bettles, and B.C. Muddle, Age-hardening Behaviour of Two Metastable Beta-titanium Alloys, Mater. Sci. Eng. A, 2010, 527(26), p 7017–7026

    Article  Google Scholar 

  7. R. Santhosh, M. Geetha, V.K. Saxena, and M. Nageswararao, Studies on Single and Duplex Aging of Metastable Beta Titanium Alloy Ti-15V-3Cr-3Al-3Sn, J. Alloys Compd., 2014, 605(9), p 222–229

    Article  Google Scholar 

  8. K.N. Campo, D.R. Andrade, V.C. Opini, M.G. Mello, E.S.N. Lopes, and R. Caram, On the Hardenability of Nb-modified Metastable Beta Ti-5553 Alloy, J. Alloy. Compd., 2016, 667, p 211–218

    Article  Google Scholar 

  9. T.W. Xu, H.C. Kou, J.S. Li, F.S. Zhang, and Y. Feng, Effect of Phase Transformation Conditions on the Microstructure and Tensile Properties of Ti-3Al-15Mo-3Nb-0.2Si Alloy, J. Mater. Eng. Perform., 2015, 24(8), p 3018–3025

    Article  Google Scholar 

  10. H.Y. Zhan, W.D. Zeng, G. Wang, D. Kent, and M. Dargusch, Microstructural Characteristics of Adiabatic Shear Localization in a Metastable Beta Titanium Alloy Deformed at High Strain Rate and Elevated Temperatures, Mater. Charact., 2015, 102, p 103–113

    Article  Google Scholar 

  11. J.F. Sun, Z.W. Zhang, M.L. Zhang, F.C. Jiang, and M.H. Ding, Microstructure Evolution and their Effects on the Mechanical Properties of TB8 Titanium Alloy, J. Alloys Compd., 2015, 663, p 769–774

    Article  Google Scholar 

  12. V. Macin and H.-J. Christ, Influence of Hydride-Induced Microstructure Modification on Mechanical Properties of Metastable Beta Titanium Alloy Ti-10V-2Fe-3Al, Int. J. Hydrogen. Energ., 2015, 40(47), p 16878–16891

    Article  Google Scholar 

  13. W. Elmay, E. Patoor, T. Gloriant, F. Prima, and P. Laheurte, Improvement of Superelastic Performance of Ti-Nb Binary Alloys for Biomedical Applications, J. Mater. Eng. Perform., 2014, 23(7), p 2471–2476

    Article  Google Scholar 

  14. Y.X. Tian, Z.Y. Yu, C.Y. Aaron, D. Ong, and G.Wang Kentc, Microstructure, Elastic Deformation Behavior and Mechanical Properties of Biomedical β-type Titanium Alloy Thin-tube Used for Stents, J. Mech. Behav. Biomed., 2015, 45, p 132–141

    Article  Google Scholar 

  15. A. Biesiekierski, J.X. Lin, Y.C. Li, D.H. Ping, Y. Yamabe-Mitarai, and C. Wen, Investigations into Ti-(Nb, Ta)-Fe Alloys for Biomedical Applications, Acta Biomater., 2016, 32, p 336–347

    Article  Google Scholar 

  16. E. Ghanbari, A. Zarei-Hanzaki, E. Farghadany, and Sh Khoddam, High-Temperature Deformation Characteristics of a β-Type Ti-29Nb-13Ta-4.6Zr Alloy, J. Mater. Eng. Perform., 2016, 25, p 1554–1561

    Article  Google Scholar 

  17. X.A. Nie, Z. Hu, H.Q. Liu, D.Q. Yi, T.Y. Chen, B.F. Wang, Q. Gao, and D.C. Wang, High Temperature Deformation and Creep Behavior of Ti-5Al-5Mo-5V-1Fe-1Cr Alloy, Mater. Sci. Eng. A, 2014, 613(9), p 306–316

    Article  Google Scholar 

  18. C. Poletti, L. Germain, F. Warchomicka, M. Dikovits, and S. Mitsche, Unified Description of the Softening Behavior of Beta-metastable and Alpha+Beta Titanium Alloys During Hot Deformation, Mater. Sci. Eng. A, 2016, 651, p 280–290

    Article  Google Scholar 

  19. O.P. Karasevskaya, O.M. Ivasishin, S.L. Semiatin, and YuV Matviychuk, Deformation Behavior of Beta-titanium Alloys, Mater. Sci. Eng. A, 2003, 354(354), p 121–132

    Article  Google Scholar 

  20. T.W. Xu, J.S. Li, S.S. Zhang, F.S. Zhang, X.H. Liu, Cold Deformation Behavior of the Ti-15Mo-3Al-2.7Nb-0.2Si Alloy and its Effect on α Precipitation and Tensile Properties in Aging Treatment, J. Alloy. Compd., 2016, 682, p 404–411.

  21. X.F. Bai, Y.Q. Zhao, W.D. Zeng, Y.S. Zhang, and B. Li, Deformation Mechanism and Microstructure Evolution of TLM Titanium Alloy During Cold and Hot Compression, Rare. Metal. Mat. Eng., 2015, 44(8), p 1827–1831

    Article  Google Scholar 

  22. S. Sadeghpour, S.M. Abbasi, and M. Morakabati, Deformation-induced Martensitic Transformation in a New Metastable β Titanium Alloy, J. Alloy. Compd., 2015, 650(2), p 22–29

    Article  Google Scholar 

  23. W. Xu, K.B. Kim, J. Das, M. Calin, and J. Eckert, Phase Stability and its Effect on the Deformation Behavior of Ti-Nb-Ta-In/Cr β Alloys, Scripta Mater., 2006, 54, p 1943–1948

    Article  Google Scholar 

  24. T. Grosdidier and M.J. Philippe, Deformation Induced Martensite and Superelasticity in a β-metastable Titanium Alloy, Mater. Sci. Eng. A, 2000, 291, p 218–223

    Article  Google Scholar 

  25. S. Takashi, F. Tadahiko, H. Jung-Hwan, K. Shigeru, N. Kazuaki, S. Nobuaki, C. Rong, Y. Akira, I. Kazuhiko, S. Yoshiki, N. Takamasa, I. Hideaki, N. Naoyuki, I. Chihiro, I. Yuuichi, and S. Taketo, Multifunctional Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism, Science, 2003, 300, p 464–467

    Article  Google Scholar 

  26. J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, and J.S. Li, Characterization of Hot Deformation Behavior of a New Near Beta Titanium Alloy: Ti-7333, Mater. Des., 2013, 49, p 945–952

    Article  Google Scholar 

  27. W. Zhou, P. Ge, Y.O. Zhao, Q. Li, S.W. Xin, and J. Chen, Discontinuous Yielding in High Temperature Deformation of Ti-5553 Alloy, Rare. Metal. Mat. Eng., 2015, 44(10), p 2415–2418

    Article  Google Scholar 

  28. I. Weiss and S.L. Semiatin, Thermomechanical Processing of Beta Titanium Alloys-an Overview, Mater. Sci. Eng., A, 1998, 243(1–2), p 46–65

    Article  Google Scholar 

  29. Y.C. Zhu, W.D. Zeng, J.L. Liu, Y.Q. Zhao, Y.G. Zhou, and H.Q. Yu, Effect of Processing Parameters on the Hot Deformation Behavior of As-cast TC21 Titanium Alloy, Mater. Des., 2012, 33, p 264–272

    Article  Google Scholar 

  30. J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, and J.S. Li, High Temperature Discontinuous Yielding in a New Near β Titanium Alloy Ti-7333, Rare. Metal. Mat. Eng., 2014, 43(4), p 808–812

    Article  Google Scholar 

  31. V.V. Balasubrahmanyam and Y.V.R.K. Prasad, Deformation Behavior of Beta Titanium Alloy Ti-10V-4.5Fe-1.5Al in Hot Upset Forging, Mater. Sci. Eng. A, 2002, 336(1–2), p 150–158

    Article  Google Scholar 

  32. Y.C. Zhu, W.D. Zeng, Y.Q. Zhao, Y. Shu, and X.M. Zhang, Effect of Processing Parameters on Hot Deformation Behavior and Microstructural Evolution during Hot Compression of Ti40 Titanium Alloy, Mater. Sci. Eng. A, 2012, 552(2), p 384–391

    Article  Google Scholar 

  33. W.J. Jia, W.D. Zeng, Y.G. Zhou, J.R. Liu, and Q.J. Wang, High-temperature Deformation Behavior of Ti60 Titanium Alloy, Mater. Sci. Eng., A, 2011, 528(12), p 4068–4074

    Article  Google Scholar 

  34. K. Wang and M.Q. Li, Characterization of Discontinuous Yielding Phenomenon in Isothermal Compression of TC8 Titanium Alloy, T. Nonferr. Metal. Soc., 2016, 26(6), p 1583–1588

    Article  Google Scholar 

  35. G. Ravichandran, A.J. Rosakis, J. Hodowany, and P. Rosakis, On the Conversion of Plastic Work into Heat During High-Strain-Rate Deformation, Amer. Inst. Phys., 2002, 620, p 557–562

    Google Scholar 

  36. B.F. Wang, J.Y. Sun, H. Eric, and X.Y. Wang, Shear Localization and its Related Microstructure Mechanism in a Fine-Grain-Sized Near-Beta Ti Alloy, J. Mater. Eng. Perform., 2015, 24(1), p 477–483

    Article  Google Scholar 

  37. J.Q. Zhang and H.S. Di, Deformation Heating and Flow Localization in Ti–15–3 Metastable β Titanium Alloy Subjected to High Z Deformation, Mater. Sci. Eng., A, 2016, 676, p 506–509

    Article  Google Scholar 

  38. N. Sakaguch, M. Niinomi, and T. Akahori, Tensile Deformation Behavior of Ti-Nb-Ta-Zr Biomedical Alloys, Mater. Trans., 2004, 45(4), p 1113–1119

    Article  Google Scholar 

  39. S. Hanada, M. Ozeki, and O. Izumi, Deformation Characteristics in β Phase Ti-Nb Alloys, Metall. Mater. Trans. A, 1985, 16(5), p 789–795

    Article  Google Scholar 

  40. L. Qu, Y. Yang, Y.F. Lu, L. Feng, J.H. Ju, P. Ge, W. Zhou, D. Han, and D.H. Ping, A Detwinning Process of 332 〈113〉 Twins in Beta Titanium Alloys, Scripta Mater., 2013, 69(5), p 389–392

    Article  Google Scholar 

  41. S. Hanada and O. Izumi, Transmission Electron Microscopic Observations of Mechanical Twinning in Metastable Beta Titanium Alloys, Metall. Mater. Trans. A, 1986, 17(8), p 1409–1420

    Article  Google Scholar 

  42. S. Hanada and O. Izumi, Correlation of Tensile Properties, Deformation Modes, and Phase Stability in Commercial β-phase Titanium Alloys, Metall. Mater. Trans. A, 1987, 18(2), p 265–271

    Article  Google Scholar 

  43. Y. Yang, S.Q. Wu, G.P. Li, Y.L. Li, Y.F. Lu, K. Yang, P. Ge, Evolution of Deformation Mechanisms of Ti–22.4Nb–0.73Ta–2Zr–1.34O Alloy During Straining, Acta. Mater., 2010, 58(7), p 2778–2787.

  44. M. Morinaga, N. Yukawa, H. Ezaki, H. Adachi. Solid Solubilities in Transition-metal-based f.c.c. Alloys, Anglais, 1985, 51(2), p 223–246.

  45. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, and T. Yashiro, Design and Mechanical Properties of New β type Titanium Alloys for Implant Materials, Mater. Sci. Eng. A, 1988, 243(1–2), p 244–249

    Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge that this work was supported by the National Nature Science Foundation of China under Grant No. 51671152, Northwest Institute for Non-ferrous Metal Research and State Key Laboratory of Powder Metallurgy in CSU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quanming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liu, Q., Yang, H. et al. Room-Temperature Compressive Deformation Behavior of High-Strength Ti-15V-3Al-3Cr-3Sn-1Nb-1Zr Alloy. J. of Materi Eng and Perform 26, 3368–3375 (2017). https://doi.org/10.1007/s11665-017-2741-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2741-4

Keywords

Navigation