Skip to main content
Log in

Assembled nanoparticle films with crown ether–metal ion “sandwiches” as sensing mechanisms for metal ions

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Specialized nanoparticles known as monolayer-protected clusters (MPCs) were affixed with metal selective crown ether (CE) functional groups and assembled into novel thin films to form potential metal ion sensing materials. Films of MPCs modified with potassium specific 15-crown-5 ligands (CE-MPCs) were successfully assembled using both dithiol linkages and ester-coupling reactions. Film responses to potassium are observed spectroscopically as the manifestation of changing interparticle spacing within a film in the presence and absence of potassium. Growth dynamics, film structure, and metal response are examined. Additionally, the important role of flexibility, especially in the interconnectivity of the CE-MPCs within the film and between the CE groups themselves, is experimentally identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Warning: Use extreme caution when working with Piranha (1:3, H2O2:H2SO4) solution as it reacts violently with all organic materials.

  2. Several reports [34, 35] indicate that the dielectric effect on the SPB is substantially and specifically dampened with the use of thiol-capped nanoparticles and that a change in interparticle spacing is the most likely sensing event [13, 25, 36, 37]. Based on these reports, the film geometry used in this study is most likely even less sensitive to dielectric effects.

  3. Particular emphasis was placed on analyzing the repeatable spectral shifts in the SPB of the MPC films upon metal exposure. The magnitude of the SPB (Abs. maximum) often fluctuated, as see in Figs. 6–8, with different films and irreproducible positioning of the film in the cuvette.

References

  1. Tietz NW (2001) Fundamentals of clinical chemistry, 5th edn. W. B. Saunders Co., Philadelphia, Pennsylvania, USA

    Google Scholar 

  2. Ramsay G (1998) Commercial biosensors – applications to clinical, bioprocess, and environmental samples. John Wiley & Sons, Inc., New York, USA, and references therein

    Google Scholar 

  3. Walt DR (2002) Nat Mater 1:17

    Article  CAS  Google Scholar 

  4. Wu C (2004) Prism 14:1

    Google Scholar 

  5. Feldheim DL, Foss CA (2002) Metal nanoparticles – synthesis, characterization, and applications. Marcel Dekker, Inc., New York, USA, and references therein

    Google Scholar 

  6. Templeton AC, Wuelfing WP, Murray RW (2000) Acc Chem Res 33:27

    Article  CAS  Google Scholar 

  7. Ingram RS, Hostetler MJ, Murray RW (1997) J Am Chem Soc 119:9175

    Article  CAS  Google Scholar 

  8. Templeton AC, Zamborini FP, Wuelfing WP, Murray RW (2000) Langmuir 16:6682

    Article  CAS  Google Scholar 

  9. Lin S-Y, Tsai Y-T, Chen C-C, Lin C-M, Chen C-H (2004) J Phys Chem 108:2134

    CAS  Google Scholar 

  10. Pompano RP, Wortley PG, Moatz LM, Tognarelli DJ, Kittredge KW, Leopold MC (2006) Thin Solid Films 510:311

    Article  CAS  Google Scholar 

  11. Kim Y, Johnson RC, Hupp JT (2001) Nano Lett 1:165

    Article  CAS  Google Scholar 

  12. Quinten M, Kreibig U (1986) Surface Sci 172:557

    Article  CAS  Google Scholar 

  13. Sidhaye DS, Kashyap S, Sastry M, Hotha S, Prasad BLV (2005) Langmuir 21:7979

    Article  CAS  Google Scholar 

  14. Ghosh SK, Nath S, Kundu S, Esumi K, Pal K (2004) J Phys Chem B 108:13963

    Article  CAS  Google Scholar 

  15. Lin S-Y, Liu S-W, Lin C-M, Chen C-H (2002) Anal Chem 74:330

    Article  CAS  Google Scholar 

  16. Lin S-Y, Chen C-H, Lin M-C, Hsu H-F (2005) Anal Chem 77:4821

    Article  CAS  Google Scholar 

  17. Gokel GW, Leevy WM, Weber ME (2004) Chem Rev B 104:2723

    Article  CAS  Google Scholar 

  18. Nath N, Chilkoti A (2002) Anal Chem 74:504

    Article  CAS  Google Scholar 

  19. Wohltjen H, Snow AW (1998) Anal Chem 70:2856

    Article  CAS  Google Scholar 

  20. Evans SD, Johnson SR, Cheng YL, Shen T (2000) J Mater Chem 10:183

    Article  CAS  Google Scholar 

  21. Zellers ET, Cai Q-Y (2002) Anal Chem 74:3533

    Article  CAS  Google Scholar 

  22. Janata J (1989) Principles of chemical sensors. Plenum Press, New York, USA, and references therein

    Google Scholar 

  23. Han L, Daniel DR, Maye MM, Zhong C-J (2001) Anal Chem 73:4441

    Article  CAS  Google Scholar 

  24. Krasteva N, Besnard I, Guse B, Bauer RE, Mullen K, Yasuda A, Vossmeyer T (2002) Nano Lett 2:551

    Article  CAS  Google Scholar 

  25. Zamborini FP, Leopold MC, Hicks JF, Kulesza PJ, Malik MA, Murray RW (2002) J Am Chem Soc 124:8958

    Article  CAS  Google Scholar 

  26. Leopold MC, Donkers RL, Georganopoulou D, Fisher M, Zamborini FP, Murray RW (2004) Faraday Discuss 125:63

    Article  CAS  Google Scholar 

  27. Lowe CR, Blyth J, Millington RB, Mayes AG (2002) Anal Chem 74:3649

    Article  CAS  Google Scholar 

  28. Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Langmuir 14:17

    Article  CAS  Google Scholar 

  29. Tognarelli DJ, Miller RB, Pompano RR, Loftus AF, Sheibley DJ, Leopold MC (2005) Langmuir 21:11119

    Article  CAS  Google Scholar 

  30. Neises B, Steglich W (1984) Org Synth 63:183

    Google Scholar 

  31. Ulman A (1996) Chem Rev 96:1533

    Article  CAS  Google Scholar 

  32. Sheibley D, Tognarelli DJ, Szymanik R, Leopold MC (2005) J Mater Chem 15:491

    Article  CAS  Google Scholar 

  33. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) J Phys Chem B 107:668

    Article  CAS  Google Scholar 

  34. Templeton AC, Pietron JJ, Murray RW, Mulvaney P (2000) J Phys Chem B 104:564

    Article  CAS  Google Scholar 

  35. Aryal S, Remant B, Bhattarai N, Kim CK, Kim HY (2006) J Colloid Sci 299:191

    Article  CAS  Google Scholar 

  36. Obare SO, Hollowell RE, Murphy CJ (2002) Langmuir 18:10407

    Article  CAS  Google Scholar 

  37. Thanh NTK, Rosenzweig Z (2002) Anal Chem 74:1624

    Article  CAS  Google Scholar 

  38. Templeton AC, Chen S, Gross SM, Murray RW (1999) Langmuir 15:66

    Article  CAS  Google Scholar 

  39. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735

    Article  CAS  Google Scholar 

  40. Russell L, Galyean A, Notte S, Kittredge K, Leopold MC, manuscript in preparation

Download references

Acknowledgements

This research was generously supported by grant funding from Virginia’s Commonwealth Health Research Board and the National Science Foundation (CHE-0303830). We would also like to acknowledge Sheri Notte, Dr. Chris Stevenson, and Dr. Robert Miller of the University of Richmond for their assistance and hard work on this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Leopold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, L.E., Pompano, R.R., Kittredge, K.W. et al. Assembled nanoparticle films with crown ether–metal ion “sandwiches” as sensing mechanisms for metal ions. J Mater Sci 42, 7100–7108 (2007). https://doi.org/10.1007/s10853-007-1545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1545-6

Keywords

Navigation