Skip to main content
Log in

Recent progress on the study of the microstructure and mechanical properties of ECAE copper

  • Nano May 2006
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2008

Abstract

Results on the microstructure and the tensile properties of equal channel angular extruded (ECAE) copper processed for one to 16 passes are presented and compared with the available literature data. With increasing number of passes (N), the microstructure changes from a strongly elongated shear band structure after N = 1 and 2, towards a more equiaxed subgrain and grain structure. This is accompanied by a decrease in the cell wall or subgrain-boundary widths and an increase in recovered or even recrystallised grain structures with low dislocation densities. Electron backscatter diffraction measurements have indicated that for lower N, the location of Σ3 boundaries is restricted to shear bands, while at greater N, Σ3 boundaries were found to be more widely distributed. Texture measurements indicate close similarity with simple shear texture components and a spread of the orientation components with greater N. Upon comparing the tensile behaviour of as-ECAE Cu with the surveyed literature, broad agreement on the strength of the material is achieved. However, a strong variation in the percentage elongation to failure is also noted. Strain hardening and deformation kinetic analysis via strain rate jump tests indicate an evolution from stage III to V hardening during post-ECAE compression and a saturation in the strain rate sensitivity after N=4 resulting in maximum values of ∼0.02. Our results suggest that rather than a change in deformation mechanism, the increase in ductility with increasing N is associated with an increase in the mean free path of dislocations—with the grain boundaries remaining actively involved as the transmitter of plastic strain and their interaction with dislocations being the rate controlling deformation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. They measured a volume fraction of 1.5 % represented by dynamically recrystallised grains.

  2. With increasing fraction of recrystallised grains, the image quality is expected to improve.

  3. Possible effects on the shear stress due to changes in the Taylor factor during straining have been neglected.

References

  1. Sevillano JG, Van Houtte P, Aernoudt E (1981) Prog Mater Sci 25:69

    Article  Google Scholar 

  2. Nes E (1998) Prog Mater Sci 41:129

    Article  Google Scholar 

  3. Kocks UF, Mecking H (2003) Prog Mater Sci 48:171

    Article  CAS  Google Scholar 

  4. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103

    Article  CAS  Google Scholar 

  5. Segal VM, Reznikov VI, Drobyshevskiy AE, Kopylov VI (1981) Russian Metallurgy (Engl Transl) 1:115

    Google Scholar 

  6. Segal VM (1995) Mater Sci Eng A 197:157

    Article  Google Scholar 

  7. Zhorin VA, Shashkin DP, Yenikoponyan NS (1984) DAN SSSR 278:144

    CAS  Google Scholar 

  8. Kuznetsov RI, Bykov VI, Chernyshov VP, Pilyugin VP, Yefremov NA, Posheyev VV (1985) Sverdlovsk, IFM UNTS RAN, 1985, Preprint 4/85 (in Russian)

  9. Bridgman PW (1952) McGraw-Hill, New York (Reprinted by Harvard University Press, Cambridge, Mass., USA (1964))

  10. Birringer R, Gleiter H, Klein H-P, Marquardt P (1984) Phys Lett A 102:365

    Article  Google Scholar 

  11. Gleiter H (1989) Prog Mater Sci 33:223

    Article  CAS  Google Scholar 

  12. Lowe TC (2006) Mater Sci Eng 355:503–504

    Google Scholar 

  13. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Acta Mater 46:3317

    Article  CAS  Google Scholar 

  14. Ferrasse S, Segal VM, Hartwig KT, Goforth RE (1997) Metall Mater Trans A 28:1047

    Article  Google Scholar 

  15. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) Mater Sci Eng A 257:328

    Article  Google Scholar 

  16. Lapovok RYe (2005) J Mater Sci 40:341

    Article  CAS  Google Scholar 

  17. Bowen JR, Gholinia A, Roberts SM, Prangnell PB (2000) Mater Sci Eng A 287:87

    Article  Google Scholar 

  18. Dalla Torre FH, Lapovok R, Sandlin J, Thompson PF, Davies CHJ, Pereloma EV (2004) Acta Mater 52:4819

    Article  CAS  Google Scholar 

  19. Humphreys FJ (2001) J Mater Sci 36:3833

    Article  CAS  Google Scholar 

  20. Bowen JR, Mishin OV, Prangnell PB, Juul Jensen D (2002) Scripta Mater 47:289

    Article  CAS  Google Scholar 

  21. Bunge H-J, Texture analysis in materials science: mathematical methods, Butterworth & Co., 1st ed., Berlin (1982)

  22. Valiev RZ, Krasilnikov NA, Tzenev NK (1991) Mater Sci Eng A 137:35

    Article  Google Scholar 

  23. Valiev RZ, Mulyukov RR, Ovchinnikov VV (1990) Phil Mag Lett 62:253

    Article  CAS  Google Scholar 

  24. Valiev RZ, Kozlov EV, Mulyukov RR (1993) Mater Sci Eng A 168:141

    Article  Google Scholar 

  25. Valiev RZ, Mulyukov RR, Ovchinnikov VV, Shabashov VA (1991) Scripta Metall Mater 25:2717

    Article  CAS  Google Scholar 

  26. Valiev RZ, Korznikova GF, Mulyukov KY, Mishra RS, Mukherjee AK (1997) Phil Mag B 75:803

    CAS  Google Scholar 

  27. Valiev RZ, Kozlov EV, Ivanov YuF, Lian J, Nazarov AA, Baudelet B (1994) Acta Metall Mater 42:2467

    Article  CAS  Google Scholar 

  28. Mishin OV, Gottstein G (1998) Philos Mag A 78:373

    CAS  Google Scholar 

  29. Mishin OV, Juul Jensen D, Hansen N (2000) In: Hansen N, Huang X, Juul Jensen D (eds) Proc 21nd Risø Internat Symp Mater Sci: Recrystallisation-Fundamental Aspects and Relations to Deformation Microstructure. National Laboratory, Roskilde, Denmark, p 445

  30. Mishin OV, Juul Jensen D, Hansen N (2003) Mater Sci Eng A. 342:320

    Article  Google Scholar 

  31. Agnew SR (1998) PhD thesis, Northwestern University

  32. Hughes DA, Hansen N (2000) Acta Mater 48:2985

    Article  CAS  Google Scholar 

  33. Mishin OV, Huang X, Brown JR, Juul Jensen D (2001) In: Hansen N, Huang X, Juul Jensen D (eds) Proc 22nd Risø Internat. Symp. Mater. Sci.: Recrystallisation-Fundamental Aspects and Relations to Deformation Microstructure. National Laboratory, Roskilde, Denmark, p 335

  34. Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) Acta Mater 45:4733

    Article  CAS  Google Scholar 

  35. Komura S, Horita Z, Nemoto M, Langdon TG (1999) J Mater Res 14:4044

    Article  CAS  Google Scholar 

  36. Baik SC, Hellmig RJ, Estrin Y, Kim HS, Metallkd Z (2003) 94:759

  37. Vinogradov A, Hashimoto S, Patlan V, Kitagawa K (2001) Mater Sci Eng A 862:319

    Google Scholar 

  38. Mingler B, Karnthaler HP, Zehetbauer M, Valiev RZ (2001) Mater Sci Eng A 242:319

    Google Scholar 

  39. Höppel HW, Zhou ZM, Mughrabi H, Valiev RZ (2002) Philos Mag A 82:1781

    Article  Google Scholar 

  40. Wang YM, Ma E (2004) Acta Mater 52:1699

    Article  CAS  Google Scholar 

  41. Huang WH, Yu CY, Kao PW, Chang CP (2004) Mater Sci Eng A 366:221

    Article  Google Scholar 

  42. Wu SD, Wang ZG, Jiang CB, Li GY, Alexandrov IV, Valiev RZ (2004) Mater Sci Eng A 560:387

    Google Scholar 

  43. Han S, Lim C, Kim C, Kim S (2005) Metall Mater Trans A 36:467

    Article  Google Scholar 

  44. Vinogradov A, Suzuki T, Hashimoto S, Kitagawa K, Kuznetsov A, Dobatkin S (2006) Mater Sci For 971:503

    Google Scholar 

  45. Dalla Torre FH, Gazder AA, Gu CF, Davies CHJ, Pereloma EV, Met Mater Trans A (accepted for publication)

  46. Etter AL, Solas D, Baudin T, Penelle R (2005) Mater Sci For 845:495

    Google Scholar 

  47. Baik SC, Estrin Y, Kim HS, Hellmig RJ (2003) Mater Sci Eng A 351:86

    Article  Google Scholar 

  48. Chang CP, Sun PL, Kao PW (2000) Acta Mater 48:3377

    Article  CAS  Google Scholar 

  49. Zehetbauer MJ, Steiner G, Schafler E, Korznikov A, Korznikova E (2006) Mater Sci For 57:503

    Google Scholar 

  50. Huang CX, Wang K, Wu SD, Zhang ZF, Li GY, Li SX (2006) Acta Mater 54:655

    Article  CAS  Google Scholar 

  51. Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV (2004) Appl Phys Lett 84:592

    Article  CAS  Google Scholar 

  52. Liao XZ, Zhao YH, Zhu YT, Valiev RZ, Gunderov DV (2004) J Appl Phys 96:636

    Article  CAS  Google Scholar 

  53. Meyers MA, Vöhringer O, Lubarda VA (2001) Acta Mater 49:4025

    Article  CAS  Google Scholar 

  54. Meyers MA, Andrade RU, Chokshi HA (1995) Metall Mater Trans A 26:2881

    Article  Google Scholar 

  55. Christian JW, Mahajan S (1995) Prog Mater Sci 39:1

    Article  Google Scholar 

  56. El-Danaf E, Kalidindi SR, Doherty RD (1999) Metall Mater Trans A 30:1223

    Article  Google Scholar 

  57. Randle V (2004) Acta Mater 52:4067

    Article  CAS  Google Scholar 

  58. Sutton AP, Balluffi RW (1996) Interfaces in crystalline materials. Oxford Science Publications, Clarendon Press, p 305

  59. Venables JA (1961) Philos Mag 6:379

    Article  CAS  Google Scholar 

  60. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H (2002) Nature Mater 1:45

    Article  CAS  Google Scholar 

  61. Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM (2003) Science 300:1275

    Article  CAS  Google Scholar 

  62. Liao XZ, Zhou F, Lavernia EJ, Srinivasan SG, Baskes MI, He DW, Zhu YT (2003) Appl Phys Lett 83:632

    Article  CAS  Google Scholar 

  63. Liao XZ, Zhao YH, Srinivasan SG, Zhu YT, Valiev RZ, Gunderov DV (2004) Appl Phys Lett 84:592

    Article  CAS  Google Scholar 

  64. Rösner H, Markmann J, Weissmüller J (2004) Phil Mag Lett 84:321

    Article  Google Scholar 

  65. Meyers MA, Murr LE (1978) Acta Metall 26:951

    Article  CAS  Google Scholar 

  66. Mahajan S, Pande CS, Imam MA, Rath BB (1997) Acta Mater 45:2633

    Article  CAS  Google Scholar 

  67. Li S, Beyerlein IJ, Alexander DJ, Vogel SC (2005) Scripta Mater 52:1099

    Article  CAS  Google Scholar 

  68. Li S, Beyerlein IJ, Bourke MAM (2005) Mater Sci Eng A 394:66

    Article  Google Scholar 

  69. Li S, Beyerlein IJ, Necker CT, Alexander DJ, Bourke MA (2004) Acta Mater 52:4859

    Article  CAS  Google Scholar 

  70. Agnew SR, Weertman JR (1998) Mater Sci Eng A 242:174

    Article  Google Scholar 

  71. Huang WH, Chang L, Kao PW, Chang CP (2001) Mater Sci Eng A 307:113

    Article  Google Scholar 

  72. Gholinia A, Bate P, Prangnell PB (2002) Acta Mater 50:2121

    Article  CAS  Google Scholar 

  73. Gazder AA, Dalla Torre FH, Gu CF, Davies CHJ, Pereloma EV (2006) Mater Sci Eng A 415:126

    Article  Google Scholar 

  74. Ferrasse S, Segal VM, Kalidindi SR, Alford F (2004) Mater Sci and Eng A 368:28

    Article  Google Scholar 

  75. Gubicza J, Balogh L, Hellmig RJ, Estrin Y, Ungár T (2005) Mater Sci Eng A 334: 400–401

    Google Scholar 

  76. Cao WQ, Godfrey A, Liu W, Liu Q (2003) Mater Sci Eng A 360:420

    Article  Google Scholar 

  77. Li S, Bourke MAM, Beyerlein IJ, Alexander DJ, Clausen B (2004) Mater Sci Eng A 382:217

    Article  Google Scholar 

  78. Shih MH, Yu CY, Kao PW, Chang CP (2001) Scripta Mater 45:793

    Article  CAS  Google Scholar 

  79. Wang YM, Ma E (2003) Appl Phys Lett 83:3165

    Article  CAS  Google Scholar 

  80. Haouaoui M, Karaman I, Maier HJ, Hartwig KT (2004) Metall Mater Trans A 35:2935

    Article  Google Scholar 

  81. Wang JT, Du ZZ, Kang F, Chen G (2006) Mater Sci For 663:503–504

    Google Scholar 

  82. Krishanaiah A, Chakkingal U, Venugopal P (2006) Mater Sci For 733:503–504

    Google Scholar 

  83. Valiev RZ, Alexandrov IV, Zhu YT, Lowe TC (2002) J Mater Res 17:5

    Article  CAS  Google Scholar 

  84. Maier HJ, Gabor P, Gupta N, Karaman I, Haouaoui M (2006) Internat J.Fatigue 28:243

    Article  CAS  Google Scholar 

  85. Dalla Torre FH, Pereloma EV, Davies CHJ (2006) Acta Mater 54:1135

    Article  CAS  Google Scholar 

  86. Hart EW (1967) Acta Metall 15:351

    Article  CAS  Google Scholar 

  87. Valiev RZ (2003) Adv Eng Mater 5:296

    Article  CAS  Google Scholar 

  88. Vinogradov A, Ishida T, Kitagawa K, Kopylov VI (2005) Acta Mater 53:2181

    Article  CAS  Google Scholar 

  89. Dalla Torre FH, Van Swygenhoven H, Victoria M (2002) Acta Mater 50:3957

    Article  CAS  Google Scholar 

  90. Hollang L, Thiele E, Holste C, Brunner D (2006) Mater Sci Eng A 424:138

    Article  Google Scholar 

  91. Zehetbauer M, Seumer V (1993) Acta Metall Mater 41:577

    Article  CAS  Google Scholar 

  92. Wei Q, Cheng S, Ramesh KT, Ma E (2004) Mater Sci Eng 381:71

    Article  Google Scholar 

  93. Wang YM, Ma E (2004) Appl Phys Lett 85:2750

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Mrs. C. Gu is kindly acknowledged for assistance in texture measurements. This work was supported by the Swiss National Science Foundation, Grant # 200021-105647 (FHDT), Monash International Post-Graduate Research Scholarship (AAG) and by the Australian Research Council Discovery Project, DP0557255 (CHJD, EVP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian H. Dalla Torre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalla Torre, F.H., Gazder, A.A., Pereloma, E.V. et al. Recent progress on the study of the microstructure and mechanical properties of ECAE copper. J Mater Sci 42, 1622–1637 (2007). https://doi.org/10.1007/s10853-006-1283-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-1283-1

Keywords

Navigation