Skip to main content
Log in

Elastic properties of powders during compaction. Part 3: Evaluation of models

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

General approaches for developing models to describe the elastic properties of granular and porous materials are discussed, with emphasis on their application to predicting the elastic properties of powders undergoing uniaxial compaction. Both particle-based, and pore-based models were considered so as to reflect the transition in compact response with decreasing porosity; being particle-dominated at high porosity, then pore-dominated at low porosity. Pore-based models were further subdivided into: mechanistic models, which consider the effects of porosity on internal mechanical fields; and geometric models, for which the elastic response is assumed to correlate with a microstructural feature (e.g. load-bearing area). A selection of models suggested in the literature, considered representative of these approaches, was applied to experimental measurements of the elastic moduli of powders during compaction. In general, the geometric pore-based models show most promise, as these are able to approximate the transition in pore character during compaction. However, further developments are required for application to uniaxially compacted powders. In particular, it is necessary to develop the ability to predict more than one elastic modulus, handle irregular powder particles, and accommodate powders comprised of brittle solid phase materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hentschel ML, Page NW Elastic properties of powders during compaction. Part 1: Pseudo-isotropic moduli. J Mater Sci (accepted)

  2. Hentschel ML, Page NW Elastic properties of powders during compaction. Part 2: Elastic anisotropy. J Mater Sci (accepted)

  3. Dean EA, Lopez JA (1983) J Am Ceram Soc 66:366

    Article  CAS  Google Scholar 

  4. Wang JC (1984) J Mater Sci 19:801

    Article  CAS  Google Scholar 

  5. Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw-Hill, Singapore

  6. Duffy J, Mindlin RD (1957) J Appl Mech 24:585

    Google Scholar 

  7. Deresiewicz H (1958) Adv Appl Mech 5:233

    Article  Google Scholar 

  8. Kendall K, Alford NMCN, Birchall JD (1987) Proc R Soc Lond A 412:269

    Article  CAS  Google Scholar 

  9. Iida K (1939) Bull Earthq Res Inst 17:783

    Google Scholar 

  10. Takahashi T, Satô Y (1949) Bull Earthq Res Inst Japan 27:11

    Google Scholar 

  11. Duffy J (1959) Trans ASME J Appl Mech 26:88

    Google Scholar 

  12. Rice RW (1998) Porosity of ceramics. Marcel Dekker, New York

  13. Dantu P (1957) Proceedings of the 4th International Conference on Soil Mechanics and Foundations Engineering, vol 1. p 144

  14. Liu C-H, Nagel SR, Schecter DA, Coppersmith SN, Majumdar S, Narayan O, Witten TA (1995) Science 269:513

    Article  CAS  Google Scholar 

  15. Brandt H (1955) J Appl Mech 22:479

    Google Scholar 

  16. Digby PJ (1981) J Appl Mech Trans ASME 48:803

    Article  Google Scholar 

  17. Walton K (1987) J Mech Phys Solids 35:213

    Article  Google Scholar 

  18. Emeriault F, Chang CS (1997) J Eng Mech 123:1289

    Article  Google Scholar 

  19. Endres AL (1990) J Appl Mech Trans ASME 57:330

    Article  CAS  Google Scholar 

  20. Chang CS, Chao SJ, Chang Y (1995) Int J Solids Struct 32:1989

    Article  Google Scholar 

  21. Chang CS, Liao CL (1994) Appl Mech Rev 47:S197

    Article  Google Scholar 

  22. Dong J-J, Pan Y-W (1999) Int J Num Anal Meth Geomech 23:1075

    Article  Google Scholar 

  23. Bathurst RJ, Rothenburg L (1988) J Appl Mech Trans ASME 55:17

    Article  Google Scholar 

  24. Misra A, Chang CS (1993) Int J Solids Struct 30:2547

    Article  Google Scholar 

  25. Kruyt NP, Rothenburg L (2001) Int J Solids Struct 38:4879

    Article  Google Scholar 

  26. Kruyt NP, Rothenburg L (1998) Int J Eng Sci 36:1127

    Article  Google Scholar 

  27. Mackenzie JK (1950) Proc Phys Soc Lond 63B:2

    Article  CAS  Google Scholar 

  28. Hashin Z (1962) J Appl Mech Trans ASME 29:143

    Article  CAS  Google Scholar 

  29. Zimmerman RW (1991) Mech Mater 12:17

    Article  Google Scholar 

  30. Sayers CM, Smith RL (1982) Ultrasonics 20:201

    Article  Google Scholar 

  31. Rossi RC (1968) J Am Ceram Soc 51:433

    Article  Google Scholar 

  32. Kreher W, Ranachowski J, Rejmund F (1977) Ultrasonics 14:70

    Article  Google Scholar 

  33. Mazilu P, Ondracek G (1990) In: Herrmann KP Olesiak ZS (eds) Thermal effects in fracture of multiphase materials. Proceedings of the Euromech Colloquium 255, Oct. 31–Nov. 2, 1989. Panderburn, FRG, pp 214–226. Springer-Verlag. Berlin. (1990)

  34. Dean EA (1983) J Am Ceram Soc 66:847

    Article  CAS  Google Scholar 

  35. Zhao YH, Tandon GP, Weng GJ (1989) Acta Mech 76:105

    Article  Google Scholar 

  36. Kachanov M, Tsukrov I, Shafiro B (1994) Appl Mech Rev 47:151

    Article  Google Scholar 

  37. Eshelby JD (1957) Proc R Soc Lond A 241:367

    Article  Google Scholar 

  38. Bert CW (1985) J Mater Sci 20:2220

    Article  Google Scholar 

  39. Nielsen LF (1984) J Am Ceram Soc 67:93

    Article  CAS  Google Scholar 

  40. Nielsen LF (1982) Mater Sci Eng 52:39

    Article  Google Scholar 

  41. Hill R (1963) J Mech Phys Solids 11:357

    Article  Google Scholar 

  42. Hashin Z, Shtrikman S (1963) J Mech Phys Solids 11:127

    Article  Google Scholar 

  43. Balendran B, Nemat-Nasser S (1995) J Mech Phys Solids 43:1825

    Article  Google Scholar 

  44. Nemat-Nasser S, Hori M (1993) Micromechanics: overall properties of heterogeneous materials. Elsevier, Amsterdam

    Chapter  Google Scholar 

  45. Ramakrishnan N, Arunachalam VS (1993) J Am Ceram Soc 76:2745

    Article  CAS  Google Scholar 

  46. Martin LP, Dadon D, Rosen M (1996) J Am Ceram Soc 79:1281

    Article  CAS  Google Scholar 

  47. Rice RW (1996) In: Liu D-M (ed) Porous ceramic materials: fabrication, characterisation, applications. Trans Tech Publications, Zurich, p 1

  48. Rice RW (1996) J Mater Sci 31:102

    Article  CAS  Google Scholar 

  49. Roberts AP, Garboczi EJ (2000) J Am Ceram Soc 83:3041

    Article  CAS  Google Scholar 

  50. Budiansky B (1965) J Mech Phys Solids 13:223

    Article  Google Scholar 

  51. Wu TT (1966) Int J Solids Struct 2:1

    Article  Google Scholar 

  52. Mori T, Tanaka K (1973) Acta Metall 21:571

    Article  Google Scholar 

  53. Dvorak GJ, Srinivas MV (1999) J Mech Phys Solids 47:899, 2207

    Article  CAS  Google Scholar 

  54. Dunn ML, Ledbetter H (1995) J Mater Res 10:2715

    Article  CAS  Google Scholar 

  55. Luo J, Stevens R (1996) J Appl Phys 79:9047

    Article  CAS  Google Scholar 

  56. Ferrari M, Filipponi M (1991) J Am Ceram Soc 74:229

    Article  CAS  Google Scholar 

  57. Ponte Castañeda P, Willis JR (1995) J Mech Phys Solids 43:1919

    Article  Google Scholar 

  58. Rice RW (1996) J Mater Sci 31:1509

    Article  CAS  Google Scholar 

  59. Cytermann R (1987) Powder Metall Int 19:27

    CAS  Google Scholar 

  60. Phani KK, Niyogi SK (1987) J Am Ceram Soc 70:362

    Google Scholar 

  61. Boccaccini AR, Ondracek G, Mazilu P, Windelberg D (1993) J Mech Behav Mater 4:119

    Article  CAS  Google Scholar 

  62. Arnold M, Boccaccini AR, Ondracek G (1996) J Mater Sci 31:1643

    Article  CAS  Google Scholar 

  63. Abdel-Ghani M, Petrie JG, Seville JPK, Clift R, Adams MJ (1991) Powder Technol 65:113

    Article  CAS  Google Scholar 

  64. Skriver HL, Rosengaard NM (1992) Phys Rev B 46:7157

    Article  CAS  Google Scholar 

  65. Hentschel ML (2002) PhD thesis. The University of Newcastle

  66. German RM (1996) Sintering theory and practice. Wiley, New York

  67. Rice RW (2005) J Mater Sci 40:983

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge scholarship support for MLH through the Australian Research Council Small Grants Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. W. Page.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hentschel, M.L., Page, N.W. Elastic properties of powders during compaction. Part 3: Evaluation of models. J Mater Sci 41, 7902–7925 (2006). https://doi.org/10.1007/s10853-006-0875-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0875-0

Keywords

Navigation