Skip to main content
Log in

Evaluation and extension of physical property-porosity models based on minimum solid area

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Physical property-porosity models based on minimum solid areas of idealized stackings of either: (1) spherical particles partially bonded (e.g. sintered), or (2) spherical pores in a solid matrix are shown to agree with appropriate physical property data for bodies whose porosity is reasonably represented by such stackings. Appropriate physical properties are those determined mainly by local stress or flux, e.g. elastic properties, strengths, and electrical and thermal conductivity. The minimum solid areas are, respectively, the: (1) bond (e.g. neck) area between particles defining pores smaller than the particles, or (2) minimum web thickness between adjacent pores being more than or equal to the surrounding particles (e.g. bubbles in a foam). Combinations of the models for mixtures of basic porosity types and changes in basic model parameters (e.g. stacking) over the significant porosity range covered, are shown to agree with the literature (mainly mechanical) property data for bodies of appropriate porosity combinations. Areas of further development and testing are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Rossi, J. Am. Ceram. Soc. 51 (1968) 433.

    Google Scholar 

  2. E. A. Dean, ibid. 66 (1983) 847.

    Google Scholar 

  3. L. F. Nielsen, ibid. 67 (1983) 93.

    Google Scholar 

  4. idem, ibid. 73 (1990) 2684.

    Google Scholar 

  5. N. Ramakrishnan and V. S. Arunachalam, ibid. 76 (1993) 2745.

    Google Scholar 

  6. R. W. Rice, in “Treatise on Materials Science and Technology 11”, edited by R. McCrone, (Academic Press, New York 1977) pp. 199–381.

    Google Scholar 

  7. L. E. Nielsen, Ind. Eng. Chem. Fundam. 13 (1974) 17.

    Google Scholar 

  8. R. W. Rice, J. Mater. Sci. 28 (1993) 2187.

    Google Scholar 

  9. idem, in press.

  10. idem J. Am. Ceram. Soc. 76 (1993) 1801.

    Google Scholar 

  11. idem, in press.

  12. F. P. Knudsen, J. Am. Ceram. Soc. 42 (1959) 376.

    Google Scholar 

  13. M. Eudier, Powder Metall. (9) (1962) 278.

  14. B. Paul, Trans. Metal. Soc. AIME 218 (1960) 36.

    Google Scholar 

  15. R. W. Rice, J. Am. Ceram. Soc. 59 (1976) 536.

    Google Scholar 

  16. R. W. Rice and S. W. Freiman, in “Ceramic Microstructures”, Vol. 76 edited by R. M. Fulrath and J. A. Pask (Westview Press, Boulder, CO, 1977) pp. 800–12.

    Google Scholar 

  17. L. J. Gibson and M. F. Ashby, “Cellular Solids, Structure & Properties” (Pergamon Press, New York, 1988).

    Google Scholar 

  18. K. K. Phani and S. K. Niyogi, J. Mater. Sci. 22 (1987) 257.

    Google Scholar 

  19. K. K. Schiller, in “Mechanical Properties of Non-Metallic Brittle Materials”, edited by W. H. Walton (Interscience, New York 1958) pp. 35–49.

    Google Scholar 

  20. D. P. H. Hasselman and R. M. Fulrath, J. Am. Ceram. Soc. 47 (1964) 52.

    Google Scholar 

  21. J. B. Walsh, W. F. Brace and A. W. England, ibid. 48 (1965) 605.

    Google Scholar 

  22. N. Warren, J. Geophys. Res. 74 (1969) 713.

    Google Scholar 

  23. J. G. Zwissler and M. A. Adams, “Fracture Mechanics of Ceramics”, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York 1983) pp. 211–42.

    Google Scholar 

  24. D. J. Green, “Fracture Mechanics of Ceramics”, Vol. 8 edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange, (Plenum Press, New York, 1986) pp. 39–59.

    Google Scholar 

  25. A. N. Gent and A. G. Thomas, Rubber Chem. Technol. 36 (1963) 123.

    Google Scholar 

  26. D. R. Biswas, “Influence of Porosity on the Mechanical Properties of Lead Zirconate-Titanate Ceramics”, Materials and Molecular Research Division Annual Report, Lawrence Berkeley Laboratory, UCAL Berkeley (1976) pp. 110–13.

    Google Scholar 

  27. D. R. Biswas and R. M. Fulrath, Trans. J. Br. Ceram. Soc. 79 (1980) 1.

    Google Scholar 

  28. J. S. Wallace, “Effect of Mechanical Discontinuities on the Strength of Polycrystalline Aluminum Oxide”, MS thesis, U. Calif. Berkeley, Lawrence Berkeley Laboratory, Materials and Molecular Research Division, Annual Report LBL-6016, UC-13, TID-4500-R65 Sept. 1978.

  29. E. E. Hucke, “Glassy Carbon”, University of Michigan Report for Advance Research Projects Agency Order No. 1824 (1972).

  30. O. Ishai and L. J. Cohen, Int. J. Mech. Sci. 9 (1967) 539.

    Google Scholar 

  31. K. K. Phani and R. N. Mukerjee, J. Mater. Sci. 22 (1987) 3453.

    Google Scholar 

  32. J. Francl and W. D. Kingery, J. Am. Ceram. Soc. 37 (1954) 99.

    Google Scholar 

  33. D. Weiss, P. Kurtz and W. J. Knapp, Am. Ceram. Soc. Bull. 45 (1966) 695.

    Google Scholar 

  34. D. S. Rutman, A. F. Maurin, G. A. Taksis and Yu. S. Toropov, Refractories 5–6 (May/June) (1970) 371.

    Google Scholar 

  35. T. Saegusa, K. Kamata, Y. Iida and N. Wakao, Kagaku Kogaku 37 (1973) 811.

    Google Scholar 

  36. J. B. Austin, in “International Symposium on Thermal Insulating Material”. (American Society for Testing and Materials, Philadelphia, PA, 1936) pp. 3–67.

    Google Scholar 

  37. H. Clark, “The Effects of Simple Compression and Wetting on the Thermal Conductivity of Rocks,” American Geophysical Union, Reports and Papers, Tectonophysics, (1941) pp. 543–44.

  38. W. Woodside and J. H. Messmer, J. Appl. Phys. 32 (1961) 1699.

    Google Scholar 

  39. A. Sugawara and Y. Yoshizawa, ibid. (1962) 3135.

    Google Scholar 

  40. L. Coronel, J. P. Jernot and F. Osterstock, J. Mater. Sci. 25 (1990) 4866.

    Google Scholar 

  41. K. R. Mckinney and R. W. Rice, “Specimen Size Effects in Fracture Toughness Testing of Heterogeneous Ceramics by the Notch Beam Method”, Special Technical Publication 745 (American Society for Testing and Materials, Philadelphia, PA, 1982) pp. 118–26.

    Google Scholar 

  42. D. Ashkin, R. A. Haber and J. B. Wachtman, J. Am. Ceram. Soc., 73 CH. 1990 pp 3376–81.

  43. D. Ashkin, PhD thesis, Rutgers University (1990).

  44. S. C. Park and L. L. Hench, Sci. Ceram. Chem. Proc. (1986) 168.

  45. T. Fujiu, G. L. Messing and W. Huebner, J. Am. Ceram. Soc. 73 (1990) 85.

    Google Scholar 

  46. T. Woignier and J. Phalippou, J. Non-Cryst. Solids 100 (1988) 404.

    Google Scholar 

  47. M. A. Ali, W. J. Knapp and P. Kurtz, Bull. Am. Ceram. Soc. 46 (1967) 275.

    Google Scholar 

  48. D. J. Green and R. G. Hoagland, J. Am. Ceram. Soc. 68 (1985) 395.

    Google Scholar 

  49. D.J. Green, ibid. 68 (1985) 403.

    Google Scholar 

  50. R.W. Rice, ibid. 58 (1975) 458.

    Google Scholar 

  51. Y.L. Krasulin, V.N. Timofeev, S.M. Barinov, and A.B. Ivanov, J. Mater. Sci. 15 (1980) 1402.

    Google Scholar 

  52. L. J. Trostel Jr, J. Am. Ceram. Soc. 45 (1966) 563.

    Google Scholar 

  53. R. W. Rice, Mater. Sci. Eng. A112 (1989) 215.

    Google Scholar 

  54. J.J. Gilman, in “Fracture”, edited by B.L. Auerbach, D.K. Felbeck, G.T. Hahn and D.A. Thomas, (MIT Technology Press, Wiley, New York, 1959) pp. 193–224.

    Google Scholar 

  55. R.W. Rice, J. Am. Ceram. Soc. 77 (1994) 2232.

    Google Scholar 

  56. idem, to be published.

  57. C.CM. Wu and R. W. Rice, Ceram. Eng. Sci. Proc. 6 (1985) 977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rice, R.W. Evaluation and extension of physical property-porosity models based on minimum solid area. JOURNAL OF MATERIALS SCIENCE 31, 102–118 (1996). https://doi.org/10.1007/BF00355133

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355133

Keywords

Navigation