Skip to main content

Advertisement

Log in

Effects of calcium nitride and calcium carbonate gasifying agents on the porosity of Ni3Ti–TiC composites produced by combustion synthesis

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Combustion synthesis or Self-propagating High Temperature Synthesis (SHS) has been used to produce highly porous materials intended for biomedical applications. Two novel gasifying agents, calcium nitride and calcium carbonate, were employed to increase product porosity and pore size during the combustion synthesis reaction for two SHS chemical compositions. A greater increase in apparent porosity of the products was gained using calcium carbonate compared with calcium nitride. Conversely, a greater increase in the number of pores falling within a 101–500 μm range was gained using calcium nitride compared with calcium carbonate. A greater increase in product porosity and pore sizes was observed for the TiC-50 wt% Ni3Ti than the TiC-30 wt% Ni3Ti with both gasifying agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Munir ZA, Anslemi-Tamburini U (1989) Mater Sci Report 3:227

    Article  Google Scholar 

  2. Munir ZA (1993) J Mat Syn Proc 1(6):387

    CAS  Google Scholar 

  3. Rice RW, McDonough WJ (1985) J Am Ceram Soc 68(5):C122

    Article  CAS  Google Scholar 

  4. German RM (1989) Particle packing characteristics. Metal Powder Industries Federation, New Jersey

    Google Scholar 

  5. Wakeman RJ (1975) Powder Technol 11:297

    Article  Google Scholar 

  6. Kirdyashkin AI, Maksimov YuM, Merzhanov AG (1981) Fiz Goreniya i Vzryva (Engl Trans) 17(6):10

    CAS  Google Scholar 

  7. Shkiro VM, Borovinskaya IP (1976) Fiz Goreniya i Vzryva (Engl Trans) 12(6):945

    CAS  Google Scholar 

  8. Dunmead SD, Munir ZA, Holt JB, Kingman DD (1991) J Mat Sci 26:2410

    Article  CAS  Google Scholar 

  9. Shcherbakov VA, Merzhanov AG (1998) Combust Sci Technol 136:253

    Article  CAS  Google Scholar 

  10. Ponomarev MA, Sapronov YuA, Shteinberg AS (1996) Combust Expl Shock Waves 32(3):286

    Article  Google Scholar 

  11. Burkes DE, Yi HC, Gottoli G, Moore JJ (2006) J Mat Sci 41:2009

    Article  CAS  Google Scholar 

  12. Li BY, Rong L-J, Li Y-Y, Gjunter VE (2000) Acta Mater 48:3895–3904

    Article  CAS  Google Scholar 

  13. Ayers RA, Bateman TA, Simske SJ (2000) in Shape memory implants. Springer Verlag, Berlin, p 73

    Chapter  Google Scholar 

  14. Itin VI, Shevchenko NA, Korosteleva EN, Tukhfatullin AA, Mirgazizov MZ, Gjunter VE (1997) Tech Phys Lett 23(4):294

    Article  Google Scholar 

  15. Bronzino JD (ed) (1995) The biomedical engineering handbook. CRC Press, Boca Raton, FL, p 682

  16. Cameron HU (1994) in “Bone implant interface. Mosby, St. Louis, p 145

  17. Moore JJ, Schowengerdt FD, Ayers R, Zhang X, Castillo M (2001) in Sixth Inter. Microgravity Comb. Workshop NASA/CP-2001–210826 p 273

  18. Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH (1970) J Biomed Mater Res 4:433

    Article  CAS  Google Scholar 

  19. van Eeden SP, Ripamonti U (1994) Plast Reconstr Surg 93:959

    Article  Google Scholar 

  20. Kim HK, Jang JW, Lee CH (2004) J Mat Sci: Mat in Med 15:825

    CAS  Google Scholar 

  21. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991) J Biomed Mater Res 25:889

    Article  CAS  Google Scholar 

  22. Rich A, Harris AK (1981) J Cell Sci 50:1

    CAS  Google Scholar 

  23. Thomas K, Cook S (1985) J Biomed Res 19:875

    Article  CAS  Google Scholar 

  24. ASTM Designation (1992) C 20–92 p 5

  25. LECO Corporation, St. Joseph, MO 49085

  26. Merzhanov AG, Sytschev AE (2004) “ISMAN”, http://www.ism.ac.ru/handbook/_shs.htm#prc3, as in May 2004

  27. Merzhanov AG (1990) in Combustion and plasma-synthesis of high temperature materials. VCH Publishers, New York

  28. Shteinberg AS, Shcherbakov VA, Marynov VV, Mukhoyan MZ, Merzhanov AG (1991) Sov Phys Dokl (Engl Trans) 36(5):385–387

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Space Products Development directorate of NASA and the Director of the Institute for Space Resources, formerly CCACS, Dr. Michael Duke, for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Burkes.

Additional information

This manuscript has not been published elsewhere and has not been submitted simultaneously for publication elsewhere. Part 2 of a two series document.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burkes, D.E., Milwid, J., Gottoli, G. et al. Effects of calcium nitride and calcium carbonate gasifying agents on the porosity of Ni3Ti–TiC composites produced by combustion synthesis. J Mater Sci 41, 7944–7953 (2006). https://doi.org/10.1007/s10853-006-0863-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-0863-4

Keywords

Navigation